
Xiangyao Yu
9/9/2020

CS 764: Topics in Database Management Systems
Lecture 2: Join

1

Announcements

Piazza

Sample reviews and exam questions

Lectures after the exam: state-of-the-art research in database systems

Email me if you have problems submitting the review

2

Today’s Paper: Join

ACM Transactions on Database Systems, 1986 3

Agenda

4

System architecture and assumptions
Notations
Join algorithms
• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions
CPU: uniprocessor
• Avoids sync complexity
• Could be built on systems of the day

Memory
• Tens of Megabytes

Focus only on equi-join

CPU

Disk

Memory

Block

5

Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

6

Join Algorithms

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 8

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 9

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 10

Output
if match

Find matches in sorted runs

Sort Merge Join – Phase 1
Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length

11

Memory

input
buffer

output
buffer

Priority queue (heap)

Q: Where does 2 come from?
A: Replacement selection

Memory layout in Phase 1

Sort Merge Join – Replacement Selection

12

Min
Heap input bufferoutput buffer

Naïve solution:
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks

Sort Merge Join – Replacement Selection

13

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Min
Heap input bufferoutput buffer

Sort Merge Join – Replacement Selection

14

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Each run contains 2 × | M | blocks

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Replacement Selection

15

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Each run contains 2 × | M | blocks
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

= | " |
× | % | + | & |

× | % | ≤
| " |
%

Total number of runs

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

16

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…

Memory layout in Phase 2

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement
| M | ≥ total number runs

Satisfied if

17

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…
" ≥ | $ |

"
" ≥ | $ |namely Memory layout in Phase 2

Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges

18

Hash table on R
(size = | R | × F)

S

Simple Hash Join
• Build a hash table on R

19

Hash table on R
(size = | R | × F)

Memory

S

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory

20

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R

21

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

22

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

23

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

24

Hash table on R
(size = | R | × F)

Memory

S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

25

R S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

26

R S

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

27

R S

Memory

Hash table
for Ri

Memory layout in Phase 2

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

28

! ≤ #

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

29

! ≤ #

$
! ×& ≤ #

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join:

30

! ≤ #

$
! ×& ≤ #

$ ≤ #
& ! ≤ # '

& # ≥ $ × &

GRACE vs. Simple Hash Join
When | R | × F < | M |
• Simple hash join incurs no IO traffic
• GRACE hash join writes and reads each table (i.e., the partitions) once

When | R | × F >> | M |
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table (i.e., the partitions) once

31

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

32

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

33

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1
of GRACE hash join

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

34

Memory
out-buf

R1

out-buf
R2

out-buf
Rk

…

Hash table for R0

Memory layout in Phase 1
of hybrid hash join

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

Case 1: | R | × F < | M |
Identical to simple hash join

35

Memory

Memory layout in Phase 1
of hybrid hash join

Hash table for R0

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

Case 1: | R | × F < | M |
Identical to simple hash join

Case 2: | R | × F >> | M |
Similar to GRACE hash join

36

Memory

Memory layout in Phase 1
of hybrid hash join

out-buf
R1

out-buf
R2

out-buf
R5

…

Hash table for R0

out-buf
R3

out-buf
R4

out-buf
Rk

Evaluation

• Conclusion 1: Hash join
is generally better than
sort-merge join

• Conclusion 2: Hybrid
hash join is strictly
better than simple and
GRACE hash joins

37

Sort-merge

Simple hash

GRACE hash
Hybrid hash

Partition Overflow

38

So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

Additional Techniques

39

Babb array (or bitmap filter)
• Set a bit for each R tuple
• Use to filter S during initial scan, discard tuple if missing in array

Semijoin
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter

many S tuples
• Can be added to any join algorithm above

Join – Q/A

40

Why sqrt(325 MB) is 4 MB?
• sqrt(325MB / block_size) = 4 MB / block_size

Modern systems using Babb array?
Join in in-memory database?
Evaluation on real, parallel systems?
Babb filter vs. Bloom filter

Group Discussion
Is it possible to make GRACE hash join work when ?
For example, | M | = 10, F = 1, | R | = 1000. You may modify the
GRACE hash join algorithm as described in the paper.

Is it possible for a sort-merge join algorithm to outperform a hash-based
join algorithm? If yes, when can this happen?

41

! < # × %

Before Next Lecture
Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
• Title: Lecture 2 discussion. group ##
• Authors: Names of students who joined the discussion

Deadline: Thursday 11:59pm

Submit review for
Hong-Tai Chou, David J. DeWitt, An Evaluation of Buffer Management

Strategies for Relational Database Systems. Algorithmica 1986.

42

https://wisc-cs764-f20.hotcrp.com/

