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CS 764: Topics in Database Management Systems
Lecture 2: Join
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Announcements

Piazza 

Sample reviews and exam questions

Lectures after the exam: state-of-the-art research in database systems

Email me if you have problems submitting the review
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Today’s Paper: Join

ACM Transactions on Database Systems, 1986 3



Agenda
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System architecture and assumptions
Notations 
Join algorithms
• Sort merge join
• Simple hash join
• GRACE hash join 
• Hybrid hash join

Partition overflow and additional techniques



System Architecture and Assumptions 
CPU: uniprocessor
• Avoids sync complexity
• Could be built on systems of the day

Memory 
• Tens of Megabytes

Focus only on equi-join 

CPU

Disk

Memory

Block
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Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M 

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks
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Join Algorithms



Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 8
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Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 10

Output 
if match

Find matches in sorted runs



Sort Merge Join – Phase 1 
Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length
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Memory

input 
buffer

output 
buffer

Priority queue (heap)

Q: Where does 2 come from? 
A: Replacement selection 

Memory layout in Phase 1



Sort Merge Join – Replacement Selection
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Min
Heap input bufferoutput buffer

Naïve solution: 
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Min
Heap input bufferoutput buffer



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Each run contains 2 × | M | blocks

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Each run contains 2 × | M | blocks
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
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Total number of runs

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run
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Memory
in-buf
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Memory layout in Phase 2



Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement 
| M | ≥ total number runs

Satisfied if
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Memory
in-buf
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" ≥ | $ |

"
" ≥ | $ |namely Memory layout in Phase 2



Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges
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Hash table on R
(size = | R | × F )

S



Simple Hash Join
• Build a hash table on R
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Hash table on R
(size = | R | × F )

Memory

S



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk

write back 
to disk



Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk

write back 
to disk



Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S



GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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R S

Memory
out-buf
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Memory layout in Phase 1



GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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R S

Memory

Hash table 
for Ri

Memory layout in Phase 2



GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition
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GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory
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GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join: 
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GRACE vs. Simple Hash Join
When | R | × F < | M |
• Simple hash join incurs no IO traffic
• GRACE hash join writes and reads each table (i.e., the partitions) once

When  | R | × F >> | M |  
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table (i.e., the partitions) once
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!

Case 1: | R | × F < | M |
Identical to simple hash join
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!

Case 1: | R | × F < | M |
Identical to simple hash join

Case 2: | R | × F >> | M |
Similar to GRACE hash join
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Memory

Memory layout in Phase 1 
of hybrid hash join
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Evaluation

• Conclusion 1: Hash join 
is generally better than 
sort-merge join

• Conclusion 2: Hybrid 
hash join is strictly 
better than simple and 
GRACE hash joins

37

Sort-merge

Simple hash

GRACE hash
Hybrid hash



Partition Overflow
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So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a 
partition does not fit in memory? 

Solution: further divide into smaller partitions range



Additional Techniques
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Babb array (or bitmap filter)
• Set a bit for each R tuple
• Use to filter S during initial scan, discard tuple if missing in array

Semijoin
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter 

many S tuples
• Can be added to any join algorithm above



Join – Q/A
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Why sqrt(325 MB) is 4 MB?
• sqrt(325MB / block_size) = 4 MB / block_size

Modern systems using Babb array? 
Join in in-memory database? 
Evaluation on real, parallel systems?
Babb filter vs. Bloom filter



Group Discussion
Is it possible to make GRACE hash join work when                  ? 
For example, | M | = 10, F = 1, | R | = 1000. You may modify the 
GRACE hash join algorithm as described in the paper. 

Is it possible for a sort-merge join algorithm to outperform a hash-based 
join algorithm? If yes, when can this happen? 
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Before Next Lecture
Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
• Title: Lecture 2 discussion. group ##
• Authors: Names of students who joined the discussion

Deadline: Thursday 11:59pm

Submit review for
Hong-Tai Chou, David J. DeWitt, An Evaluation of Buffer Management 

Strategies for Relational Database Systems. Algorithmica 1986.
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https://wisc-cs764-f20.hotcrp.com/

