WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 21: PushdownDB

Xiangyao Yu
11/16/2020



Today’s Paper

PushdownDB: Accelerating a DBMS
using S3 Computation

Xiangyao Yu*, Matt Youill}, Matthew Woicik!, Abdurrahman GhanemS,
Marco Serafini¥, Ashraf Aboulnaga®, Michael Stonebraker!
*University of Wisconsin-Madison TMassachusetts Institute of Technology
'Burnian §Qatar Computing Research Institute quniversity of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem @hbku.edu.qa,
marco@cs.umass.edu, aaboulnaga@hbku.edu.qa, stonebraker@csail.mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analytics queries into the Simple Storage Service
(S3) engine of Amazon Web Services (AWS), using a recently
released capability called S3 Select. We show that some DBMS
primitives (filter, projection, aggregation) can always be cost-
effectively moved into S3. Other more complex operations (join,
top-K, group-by) require reimplementation to take advantage of
S3 Select and are often candidates for pushdown. We demonstrate
these capabilities through experimentation using a new DBMS
that we developed, PushdownDB. Experimentation with a collec-
tion of queries including TPC-H queries shows that PushdownDB
is on average 30% cheaper and 6.7 x faster than a baseline that
does not use S3 Select.

ICDE 2020

functionality as close to storage as possible. A pioneering pa-
per by Hagmann [6] studied the division of SQL code between
the storage layer and the application layer and concluded that
performance was optimized if all code was moved into the
storage layer. Moreover, one of the design tenets of the Britton-
Lee IDM 500 [7], the Oracle Exadata server [8], and the IBM
Netezza machine [9] was to push computation into specialized
processors that are closer to storage.

Recently, Amazon Web Services (AWS) introduced a fea-
ture called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
S3 [10]. This provides an opportunity to revisit the question of



Cloud Database Architecture

CPU CPU CPU CcPU cPU o
Mem Mem Mem
Mem Mem Mem Network

O 101010
- FEEE-
HDD HDD HDD HDD

On-premises Cloud
* Fixed and limited hardware  Virtually infinite computation & storage,
resources Pay-as-you-go price model
« Shared-nothing architecture » Disaggregation architecture



Storage-Disaggregation Architecture

CPU CPU CPU
Mem Mem Mem
Network

o010
' ) (O (3 (=-
- -

Features of the disaggregation architecture

Computation and storage layers are disaggregated
Limited computation can happen in the storage layer



Storage-Disaggregation Architecture

CPU

CPU

CPU

Mem

Mem

Mem

Network

Advantages

* Lower management cost

o010
' ) (O (3 (=-
- -

Features of the disaggregation architecture
« Computation and storage layers are disaggregated
« Limited computation can happen in the storage layer

Disadvantages
e Network becomes a bottleneck

* Independent scaling of computation
and storage



How to Mitigate the Network Bottleneck?

CPU CPU CPU
Mem Mem Mem
Network

o010
' ) (O (3 (=-
- -

Solution 1: Move data to computation
« Cache storage data in the computation layer
« Example: Snowflake

Solution 2: Move computation to data
« Pushdown computation to the storage layer
« Example: PushdownDB (this talk)



What about Redshift Spectrum?

Architecture of Amazon Redshift Spectrum

JDBC/ODBC Client Application

v

Leader Node

Node 1

Node 1

Node n

- et £t Ty e
Lee— i N —~\

Spectrum

Spectrum

Spectrum

Spectrum

\

|

/1-—-"/—

o o —— e o e -

S3

Catalog

v
e

Redshift Scaling

Independent Scaling

The Redshift layer is similar to static caching
The Spectrum layer implements computation pushdown



PushdownDB Architecture

CPU
Mem

| Network |

CPU CPU CPU CPU

Main tenet of database systems: Keep computation close to storage

Key guestions to address in this project:
« How to implement relational operators to leverage existing cloud services?
« What are the performance and cost tradeoffs?



PushdownDB — Building Blocks

= EC2 (r4.8xl
Vo (r4.8xlarge)
Network |— 10 Gbit Ethernet

|—> S3 Select

@ @ @ @ I_’ Simple Storage Service (S3)

PushdownDB implementation

« Single-node, multi-process Python-based database
« Ubuntu 16.04.5 LTS, Python version 2.7.12.

Source code: https://github.com/yxymit/s3filter.qit



https://github.com/yxymit/s3filter.git

Simple Cloud Storage (S3)

CPU
Mem

Network

CPU CPU CPU CPU
Ei Ei @ ‘ |—> Simple Storage Service (S3)

Virtually infinite storage capacity with relatively low cost

Partition inB_ut relations into multiple shards, each shard is stored as a
separate object in S3

S3 vs. elastic block store (EBS) vs. local store
« Virtually infinite capacity, shared across all nodes, lower cost, durable
10



S3 Select

_______________________________

1,04
CPU Before: D®©ﬂ %ﬂ @%
Mem ﬁ]©ﬂ ﬂ@

Amazon S3  TTTTTTTTTmmmmmmomomomomomomee-

Network

3 Select
104 14:04' 1:04- 1.0 oo AN

| N —

CPU CPU CPU
Amazon S3

Supports limited SQL queries on CSV and Parquet data format
» S3 Select recognizes database schema for both data formats
« Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

11



Cost Factors

Storage cost
« $0.022/GB/month for data in S3

Data transfer cost

 Free for data transfer within the same region
« $0.09/GB for transferring data out of AWS

S3 select cost

« Data scan cost: $0.002 per GB
« Data return cost: $0.0007 per GB

Network request cost
« $0.0004 per 1,000 requests

Computation cost
« Depends on the instance type
« For r4.8xlarge (32 core, 244 GB of memory), $2.128 per instance per hour

12



Cost Factors

Storage cost
« $0.022/GB/month for data in S3

Data transfer cost

 Free for data transfer within the same region
« $0.09/GB for transferring data out of AWS

S3 select cost

- Data scan cost: $0.002 per GB
« Data return cost: $0.0007 per GB

Network request cost
« $0.0004 per 1,000 requests

Computation cost
« Depends on the instance type
« For r4.8xlarge (32 core, 244 GB of memory), $2.128 per instance per hour

13



PushdownDB — Supported Operators

S3 Select supports PushdownDB supports
* Filter — Filter
* Project — Project
 Aggregate without group-by _ Top-K
— Join

— Group-by

14



Filter

Server-side filtering
« Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

CPU

Mem

15



Filter

Server-side filtering

« Compute server loads entire table from S3 and filters locally

S3-side filtering

« Push down predicate evaluation using S3 Select

CPU
Mem

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

ExEe

16




Filter

Server-side filtering

« Compute server loads entire table from S3 and filters locally

S3-side filtering

« Push down predicate evaluation using S3 Select

Indexing

« Push down predicate evaluation using S3 Select

Col1 | Col2

Col3

Col4

Col5

Cold

start |
offset

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

—end |
offset

Original Table

Index Table

17



Filter — Evaluation

Runtime (sec)

100 | B Server-Side Filter & S3-Side Filter [ Indexing| 0.10. L Server-Side Filter FH S3-Side Filter [ Indexing
. 1 Compute Cost 0.30
o 1 T ——————— R 0.08¢}-- VA, Request CoSt |
o~ KN] Scan Cost
60 e B : 006 - Transfer Cost |
7]
2 ) B . o SRR .
S 0.04
------------------------- B 002
0 — = W0 B oool HN= IR BN B
1077 1076 107° 10~ 103 10 : 106 1075 104 103 102
Filter Selectivity Filter Selectivity
(a) Runtime (b) Cost

18



Join

Baseline Join
» Server loads both tables from S3 and joins locally

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O _CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O ORDERDATE < upper o orderdate

19



Join

Baseline Join
» Server loads both tables from S3 and joins locally

Filtered Join
« Server pushes filtering predicates to S3 to load both tables

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O _CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O _ORDERDATE < upper o_orderdate

20



Join

Bloom Join
» Step 1: Server loads the smaller table, builds a bloom filter using join key
« Step 2: Server sends the filter via S3 Select to load the bigger table
« Bloom filter is pushed down as a predicate

SELECT ...
FROM S30bject
WHERE SUBSTRING(’'1000011...111101101°',
((69 * CAST(attr as INT) + 92) % 97) $ 68 + 1, 1 ) = "1’

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O ORDERDATE < upper o orderdate




Join — Evaluation

Runtime (sec)

[ Baseline Join

[ Filtered Join [ Bloom Join

_ e e
O N B OO ONPBO
T

Bloom Filter False Positive Rate

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O ORDERDATE < upper o orderdate

0.020

0.015

0.010

Cost ($)

0.005

0.000

[ Baseline Join

[ Filtered Join [ Bloom Join

KN] Scan Cost
¥ /71 Transfer Cost| |

[ Compute Cost
KX Request Cost

Bloom Filter False Positive Rate

22




Group-By

Example
group-by query

SELECT c nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_ nationkey;

23



Group-By

Example SELECT c_nationkey, sum(c_acctbal)
p FFROM customer
group-by query | crour BY c_nationkey;

Server-Side Group-By

« Compute server loads entire table from S3 and performs group-by

Filtered Group-By
» Pushes filtering predicates to S3 when loading the table



Group-By

Example SELECT c_nationkey, sum(c_acctbal)
p FFROM customer
group-by query | crour BY c_nationkey;

S3-Side Group-By
« Step 1: S3 Select to obtain all c_nationkey values
« Step 2: Load data from S3 through the following S3 Select

SELECT
sum(CASE WHEN c nationkey = 0 THEN c_ acctbal ELSE 0 END),
sum(CASE WHEN c nationkey 1 THEN c_acctbal ELSE 0 END)

FROM customer;

25



Group-By

Example SELECT c_nationkey, sum(c_acctbal)
p FFROM customer
group-by query | crour BY c_nationkey;

S3-Side Group-By
« Step 1: S3 Select to obtain all c_nationkey values
« Step 2: Load data from S3 through the following S3 Select

SELECT
sum(CASE WHEN c nationkey = 0 THEN c_acctbal ELSE 0 END),
sum(CASE WHEN c nationkey 1 THEN c_acctbal ELSE 0 END)

FROM customer;

 Limitation: Significant computation in S3 if many groups exist

26



Group-By

Example SELECT c_nationkey, sum(c_acctbal)
p FFROM customer
group-by query | crour BY c_nationkey;

S3-Side Group-By
Hybrid Group-By

« Step 1: S3 Select to obtain all c_nationkey values (can skip if histograms are available)
« Step 2: Perform S3-side group by for only populous groups

SELECT
sum(CASE WHEN c nationkey = 0 THEN c_acctbal ELSE 0 END)

FROM customer;
« Step 3: In parallel to Step 2, load the rest columns to server and performs group-by locally

SELECT c_nationkey, sum(c_acctbal)
FROM customer
WHERE c_nationkey <> 0;




Group-By — Evaluation

Runtime Cost Breakdown

[ Server-Side Group-By [ Filtered Group-By [C1 Hybrid Group-By

[ Server-Side Group-By [T Filtered Group-By [ Hybrid Group-By

[ 1 Compute RXXXI Request Scan Transfer

0.09
0.08}
0.07}
_0.06]
Zo0.05}
2 0.04]
©0.03} -
0.02}
0.01}
0.00

0.6 0.9
Skew Factor Skew Factor

Hybrid group-by reduces runtime by 31%
Hybrid group-by increases cost due to multiple scans

28




Top-K

Example
top-K query

Server-Side Top-K

SELECT *

FROM lineitem

ORDER BY 1 extendedprice ASC
LIMIT K

« Compute server loads entire table from S3 and performs top-K

29



Top-K

- | SELECT *

xample FROM lineitem

top-K query ORDER BY 1 extendedprice ASC
LIMIT K

Sampling-based top-K
* Observation: if have seen K values less than a threshold, there is no need to load values
greater than the threshold



Top-K

- | SELECT *

xample FROM lineitem

top-K query ORDER BY 1 extendedprice ASC
LIMIT K

Sampling-based top-K
* Phase 1: Load a sample of S records (load only the columns in ORDER BY clause) and
calculate the threshold
* Phase 2: Load all records that are smaller than the threshold



Top-K

= | SELECT *

xample FROM lineitem

top-K query ORDER BY 1 extendedprice ASC
LIMIT K

Sampling-based top-K
* Phase 1: Load a sample of S records (load only the columns in ORDER BY clause) and
calculate the threshold
* Phase 2: Load all records that are smaller than the threshold

. KNB
Total network traffic: D = D; + Dy = aSB + —o
 B: size of each row in bytes D is minimized when
« S:the sample contains S rows KN
- a: fraction of a row for the sampling phase =~ e

 N: table contains N rows

32



Top-K Evaluation

ST [ Sampling Phase [ Scanning Phase |

Runtime (sec)
OFRNWHUTO I ®

Sample Size
(a) Runtime

0.020 ‘ : - : l
0.015F ket g e e AN ]
~
~ [ Compute Cost
g 0.010 NN NN N\ 1 Request Cost | |
© I Scan Cost
0005 NN NN N\Y ZZ Transfer Cost | |
0.000 10" 10° 10°
Sample Size
(b) Cost

Runtime (sec)

200

150

100

o)
(o]

3 Server-Side Top-K [0 Sampling Top-K
1 10 10? 10°
K
(a) Runtime
3 Server-Side Top-K I Sampling Top-K

[ Compute Cost
Request Cost |~
- X Scan Cost | 1

|[ZA Transfer Cost

(b) Cost

33




Evaluation — All Operators and TPC-H

80 T T T T T T T T T T
o 70 SRR B PushdownDB (Baseline) [EEE PushdownDB (Optimized) |-
QD (55 () | ..o T |
% 5
A0 - B
-g 30k B e R R R
S 20t mmm BB R R R
RTINS DUNEERREN S B R s BRI B B DU DU R DA B

0
Filter Group-by Top-K Join TPCH Q1 TPCH Q3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(a) Runtime

0-12 U T L . T U 1 1 1 1 T

010k [ ComputeCost| ~  mum I PushdownDB (Baseline) [EZ@ PushdownDB (Optimized) | |
. LA Request Cost

@ 0.08 g KX ScanCost |  pFA
% 0.06F R E [ZZ Transfer COSt | )

Filter Group-by Top-K Join TPCHQ1l TPCHQ3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(b) Cost

Overall, PushdownDB reduces runtime by 6.7x and reduces cost by 30%

34



Discussion and Ongoing Work

Suggestions for S3 Select
1. Multiple byte ranges for each GET request
2. Index inside S3
3. More efficient Bloom filters
4. Partial group-by
5. Computation-aware pricing

Ongoing development on PushdownDB

* Rewrite the framework with C++
« Hybrid caching and pushdown
« Workload-specific caching policy

13/14



PushdownDB — Q/A

For the bloom filter, why need k hash functions instead of 77?
How to handle node failures?

What if the compute node runs out of memory?

Competitor to S3 select outside of Amazon?

Would the indexing technique work for Snowflake as well?
Can operator pushdown be extended to other systems?
How stable are AWS prices?

Can a shared-nothing architecture perform better?

36



PushdownDB Discussion

Is it a good idea to entirely push the join operator to the storage
layer? What are the main benefits and limitations of doing this?

Can you think of other aspects of databases (i.e., besides operator
pushdown) or other applications that can also benefit from the

storage-disaggregation architecture?

37



Next Lecture

Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
* Title: Lecture 21 discussion. group ##
« Authors: Names of students who joined the discussion

Deadline: Tuesday 11:59pm

Submit review for

* Verbitski, Alexandre, et al., Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases, SIGMOD 2017

38


https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/aurora-sigmod-17.pdf

