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ABSTRACT

Optimistic concurrency control, or OCC, can achieve excellent
performance on uncontended workloads for main-memory trans-
actional databases. Contention causes OCC’s performance to de-
grade, however, and recent concurrency control designs, such as
hybrid OCC/locking systems and variations on multiversion con-
currency control (MVCC), have claimed to outperform the best
OCC systems. We evaluate several concurrency control designs
under varying contention and varying workloads, including TPC-
C, and find that implementation choices unrelated to concurrency
control mav exnlain much of OCC’s nreviouslv-renorted deera-

reordering [57], and multiversion concurrency control (MVCC) [24,
31], change the transactional concurrency control protocol to better
support high-contention transactions. In their evaluations, these de-
signs show dramatic benefits over OCC on high-contention work-
loads, including TPC-C, and some show benefits over OCC even
at low contention [31]. But many of these evaluations compare dif-
ferent code bases, potentially allowing mere implementation differ-
ences to influence the results.

We analyzed several main-memory transactional systems, in-
cluding Silo [49], DBx1000 [56], Cicada [31], ERMIA [24], and
MOCC [50], and found underappreciated engineering choices —

VLDB 2020 (best paper award)
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OCC, 1981

Goal: eliminating pessimistic locking
Three executing phases:

° \F/{eﬁdd " read validation write
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» time

Fig. 1. The three phases of a transaction.



OCC, 1981 — Serial Validation

thegin = (
start tn = tnc)

tend = (
(finish tn := tnc;
valid := true;
for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
if valid
then ((write phase); tnc = tnc + 1; tn := tnc));
“if valid
then (cleanup)
else (backup)).

Critical Section

Each transaction is validated
against previous transactions
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OCC, 1981 — Parallel Validation

tend = (
inish tn .= tnc;
finish active ;= (make a copy of active);
active := active U {id of this transaction});

valid ;= true;

for ¢t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
for i € finish active do
if (write set of transaction T; intersects read set or write set)
then valid .= false;
if valid . i
then ( Critical Sections

(write phase);

(tnc:=tnc + 1;
tn .= tne;
active := active—{id of this transaction});

(active := active—{id of transaction});
{bacRup))).

LE J —

Each transaction is validated against
previous transactions

Issue 1: Critical sections become
scalability bottlenecks

Issue 2: Need to compare write sets
even for non-conflicting transactions




Silo OCC (SOSP 2013)

atomic_fetch_and _add(&lsn, size);

.

Even a single atomic
instruction can become a
scalability bottleneck

10M
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2M | .
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Worker threads

Throughput (txns/sec)

[1] Tu, Stephen, et al. "Speedy transactions in multicore in-memory databases." SOSP 2013



Silo Protocol — Record Layout

Each tuple contains a TID word which is broken into three pieces:

Status bits Sequence number Epoch number
0 63

Sequence number: version number of the tuple
The sequence number is read together with the tuple data
The sequence number is incremented when the tuples is updated



Silo Protocol — Validation and Write Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ LE;
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record Z W)
then abort();
for node, version in N do
if node.version # version then abort();
commit-tid < generate-tid(R, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

// serialization point

Phase 1: Lock the write set



Silo Protocol — Validation and Write Phase

Data: read set R, write set W, node set N, Phase 1 . LOCk the Write Set
global epoch number E
// Phase 1
‘for record, new-value in sorted(W) do ‘ _
lock(record); Phase 2: Validate the read set

compiler-fence(); . . . _
¢ E / serialization point Validation _f_alls |f_ (1) the tuple_ has
compiler-fence(); been modified since the earlier read
// Phase 2 (TIDs don’t match) or (2) the tuple
for record, read-tid in R do has been locked

if record.tid # read-tid or not record.latest
or (record.locked and record Z W)
then abort();

for node, version in N do
if node.version # version then abort();
commit-tid < generate-tid(R, W, e);
// Phase 3
for record, new-value in W do
write(record, new-value, commit-tid);

unlock(record); 10



Silo Protocol — Validation and Write Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record Z W)
then abort();

for node, version in N do
if node.version # version then abort();
commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Phase 2: Validate the read set

 Validation fails if (1) the tuple has
been modified since the earlier read
(TIDs don’t match) or (2) the tuple
has been locked

Phase 3: Write to database

11



Silo vs. OCC 1981

Validation against previous transactions vs. tuple versions

12



Silo vs. OCC 1981

Validation against previous transactions vs. tuple versions
Fault tolerance mechanism (skipped in this lecture)

13



Silo vs. OCC 1981

Validation against previous transactions vs. tuple versions
Fault tolerance mechanism (skipped in this lecture)
Low-level optimizations

How to consistently read a record and its TID word without latching?

// read tuple t

do
vl = t.read TID word()
RS[t.key].data = t.data
vZ = t.read TID word()

while (vl != v2 or vl.lock bit == 1);

14



TicToc (SIGMOD 2016)

1, writesx = 4 1, commits
33 ’
% $ }
rpreadsx = 3 1, writes y = 42 t, commits

* In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails

15



TicToc (SIGMOD 2016)

1, writesx = 4 1, commits
33 "
% $ }
rpreadsx = 3 1, writes y = 42 t, commits

* In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails

 But serializability is not violated if we order T2 before T1



TicToc (SIGMOD 2016)

1, writesx = 4 1, commits
$ >
g s ’
rpreadsx = 3 1, writes y = 42 t, commits

* In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails

 But serializability is not violated if we order T2 before T1

« Key idea: dynamically determine the order of transactions based on the
data access pattern

* The determined logical order can be different from the physical time order



TicToc — Record Layout

Each tuple contains a locking bit and two timestamps

Locking bits | wts (write timestamp) | rts (read timestamp)
0 63

For a read: load the timestamps together with the tuple data
The timestamps are updated during validation and write phases

18



TicToc — Validation Phase

Algorithm 2: Validation Phase

1
2
3

14

15
16
17
18

19
20

Data: read set RS, write set WS
# Step 1 — Lock Write Set

for w in sorted(WS) do

end

lock(w.tuple)

# Step 2 — Compute the Commit Timestamp
commit_ts = 0

for

end
# S
for

end

ein WS URS do
if ¢ in WS then
| commit_ts = max(commit_ts, e.tuple.rts +1)
else
| commit_ts = max(commit_ts, e.wts)
end

tep 3 — Validate the Read Set

rin RS do

if r.rts < commit_ts then

# Begin atomic section

if rwts # r.tuple.wts or (r.tuple.rts < commit_ts and
isLocked(r.tuple) and r.tuple not in W) then

| abort()
else
‘ r.tuple.rts = max(commit_ts, r.tuple.rts)
end
# End atomic section
end

Phase 1: Lock the write set

19



TicToc — Validation Phase

Algorithm 2: Validation Phase

Data: read set RS, write set WS
# Step 1 — Lock Write Set

1
2
3

for w in sorted(WS) do
| lock(w.tuple)
end

# Step 2 — Compute the Commit Timestamp

commit_ts = 0
for e in WS U RS do
if ¢ in WS then
| commit_ts = max(commit_ts, e.tuple.rts +1)
else
| commit_ts = max(commit_ts, e.wts)
10 end
11jend

4
5
6
7
8
9

# Step 3 — Validate the Read Set
12 for rin RS do

13 if r.rts < commit_ts then
# Begin atomic section

14 if rwts # r.tuple.wts or (r.tuple.rts < commit_ts and
isLocked(r.tuple) and r.tuple not in W) then

15 | abort()

16 else

17 ‘ r.tuple.rts = max(commit_ts, r.tuple.rts)

18 end
# End atomic section

19 end

20 end

Phase 1: Lock the write set

Phase 2: Compute the commit
timestamp

20



TicToc — Validation Phase

Algorithm 2: Validation Phase

1
2
3

4
5
6
7
8
9

10
11

12 for rin RS do
if r.rts < commit_ts then

13

14

15
16
17
18

19
20

Data: read set RS, write set WS
# Step 1 — Lock Write Set

for w in sorted(WS) do
| lock(w.tuple)

end

# Step 2 — Compute the Commit Timestamp

commit_ts = 0
for e in WS U RS do

end

if e

else

end

in WS then
commit_ts = max(commit_ts, e.tuple.rts +1)

commit_ts = max(commit_ts, e.wts)

# Step 3 — Validate the Read Set

end

# Begin atomic section
if nwts # r.tuple.wts or (r.tuple.rts < commit_ts and
isLocked(r.tuple) and r.tuple not in W) then

| abort()
else

‘ r.tuple.rts = max(commit_ts, r.tuple.rts)
end
# End atomic section

end

Phase 1: Lock the write set

Phase 2: Compute the commit
timestamp

Phase 3: Validate the read set

21



Silo vs. TicToc

t, writesx = 4 t; commits Silo aborts T2

v

; ? TicToc may commit
t, readsx = 3 1, writes y = 42 t, commits both transactions

I Step 4
>
Xy Physical
Time

V¥ Acread(x) B .write(x) Wi A commits @ 3
B commits @ 4

22



Silo vs. TicToc

Data: read set R, write set W, node set N, Algorithm 2: Validation Phase

global epoch number E Data: read set RS, write set WS
# Step 1 — Lock Write Set

// Phase 1 . 1] for w in sorted(WS) do
for record, new-value in sorted(W) do 2| | lock(w.tuple)
lock(record); 3l end
compiler-fence(); # Step 2 — Compute the Commit Timestamp
e« E,; // serialization point 4| commit_ts = (
compiler-fence(); 5 for e in WS U RS do
6 if e in WS then
// Phase 2 7 | commit_ts = max(commit_ts, e.tuple.rts +1)
for record, read-tid in R do 8 else
if record.tid # read-tid or not record.latest 9 | commit_ts = max(commit_ts, e.wts)
or (record.locked and record ¢ W) 10 end
then abort(); 11 end
for node, version in N do # Step 3 — Validate the Read Set
if node.version # version then abort(); 12 for L RS do .
o . 13 if r.rts < commit_ts then
commit-tid < generate-tid(R, W, e); # Begin atomic section
14 if rwts # rtuple.wts or (r.tuple.rts < commit_ts and
isLocked(r.tuple) and r.tuple not in W) then
o . 15 abort()
Phase 1 is identical s I
. . . . . . 17 | r.tuple.rts = max(commit_ts, r.tuple.rts)
Main difference is in the validation phase 13 end
# End atomic section
19 end

20 end




Multi-Version Concurrency Control

Version chain

wis [ ris J_ [ wisT s J_[wisT s
=12 | =20 1 =5 | =12 1 = =5

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read



Multi-Version Concurrency Control

Version chain

wis [ ris J_ [ wisT s J_[wisT s
=12 | =20 1 =5 | =12 1 = =5

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read

Advantages
* Read-only transaction can read slightly stale data to avoid conflicts
* An early read does not conflict with a later write



Multi-Version Concurrency Control

Version chain

wis [ ris J_ [ wisT s J_[wisT s
=12 | =20 | =5 | =12 1 =1 | =

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read

Advantages

* Read-only transaction can read slightly stale data to avoid conflicts
* An early read does not conflict with a later write

Disadvantages
« Overhead of managing multiple versions (e.g., garbage collect)

26



Basis Factors

Contention Memory
System regulation allocation
Silo [49] —— ——
STO [21] —— ——
DBx1000 OCC [56] + N/A
DBx1000 TicToc [57] + N/A
MOCC [50] N/A +
ERMIA [24] + +
Cicada [31] + +
STOV2 (this work) + +

Different choices of basis factors have significant impact on performance

Index types

+ 4+ L+ A+ +

Transaction
internals

e

+ + + +

Deadlock
avoidance

+

If not picking carefully, the effects of basis factors will hide the effects of

concurrency control protocols

Contention-
aware index

27



High-Contention Optimizations

Optimization 1: Commit-time updates
« Delay blind writes to the end of the transaction

T1:
tmp = y.coll,;
x.col2 += 1;

x.c0l3 = max(tmp, x.coll);
return tmp;

T2:
tmp = y.coll;
x.coll += tmp;
return x.coll;




High-Contention Optimizations

Optimization 1: Commit-time updates
« Delay blind writes to the end of the transaction

T1: T2:
tmp = y.coll; tmp = y.coll;
x.col2 += 1; x.coll += tmp;
x.col3 = max(tmp, x.coll); return x.coll;

return tmp;

Optimization 2: Timestamp splitting
« Use different timestamps to manage different attributes (similar to field-level locking)

BN

~

Infrequent Key Value
timestamp Col1 : Col2 : Col3 : Col4
Y

Lock .Frequent
timestamp

-




Evaluation — Effects of Basis Factors

e QSTO Baseline

No contention
regulation

&~ Slow allocator

Throughput (Mtxns/sec)
o
N

——

0.073 20 40 60
# threads

Different choices of basis factors have significant impact on performance

($))

Throughput (Mtxns/sec)

o

+

o)

N

—
b

—&— Inefficient aborts
—#— No hash indexes

0 20 40 60

# threads
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Evaluation — Performance Overview
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Throughput (Mtxns/sec)

Evaluation — Cross-System Comparison
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Evaluation — Optimizations
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Q/A — Modern OCC

How do updaters improve the performance of read-modify-write?

What'’s the intuition behind the following claim?

« “OCC can perform surprisingly well even under high contentions on multi-
core main memory systems.”

Why need to lock the entire write set?

We focus too much on experimental results nowadays
Overfitting to the studied workloads?

Why these basis factors not found out in previous papers?
How to automate the two optimizations?
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Next Lecture

Submit review for
« Clemens Lutz, et al. Pump Up the Volume: Processing Large Data on GPUs

with Fast Interconnects, SIGMOD 2020 (best paper award)
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http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/nvlink-gpu.pdf

