
Xiangyao Yu
11/25/2020

CS 764: Topics in Database Management Systems
Lecture 24: Modern OCC

1

Today’s Paper: Modern OCC

VLDB 2020 (best paper award) 2

Outline
Lecture 7 Recap (optimistic concurrency control)
Modern OCC protocols
• Silo
• TicToc

MVCC
Basis factors
Evaluation

3

OCC, 1981

4

Goal: eliminating pessimistic locking
Three executing phases:
• Read
• Validation
• Write

OCC, 1981 — Serial Validation

5

Critical Section

T1
T2
T3
T4

Each transaction is validated
against previous transactions

OCC, 1981 — Parallel Validation

6

Each transaction is validated against
previous transactions

Issue 1: Critical sections become
scalability bottlenecks

Issue 2: Need to compare write sets
even for non-conflicting transactions

T1
T2
T3
T4

Critical Sections

Silo OCC (SOSP 2013)

Even a single atomic
instruction can become a
scalability bottleneck

7[1] Tu, Stephen, et al. "Speedy transactions in multicore in-memory databases." SOSP 2013

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

Silo Protocol — Record Layout

8

Each tuple contains a TID word which is broken into three pieces:

Sequence number: version number of the tuple
The sequence number is read together with the tuple data
The sequence number is incremented when the tuples is updated

Status bits Sequence number Epoch number
0 63

Silo Protocol — Validation and Write Phase
Phase 1: Lock the write set

9

Silo Protocol — Validation and Write Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
• Validation fails if (1) the tuple has

been modified since the earlier read
(TIDs don’t match) or (2) the tuple
has been locked

10

Silo Protocol — Validation and Write Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
• Validation fails if (1) the tuple has

been modified since the earlier read
(TIDs don’t match) or (2) the tuple
has been locked

Phase 3: Write to database

11

Silo vs. OCC 1981
Validation against previous transactions vs. tuple versions

12

Silo vs. OCC 1981
Validation against previous transactions vs. tuple versions
Fault tolerance mechanism (skipped in this lecture)

13

Silo vs. OCC 1981
Validation against previous transactions vs. tuple versions
Fault tolerance mechanism (skipped in this lecture)
Low-level optimizations

14

// read tuple t
do

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word()

while (v1 != v2 or v1.lock_bit == 1);

How to consistently read a record and its TID word without latching?

TicToc (SIGMOD 2016)

• In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails

15

TicToc (SIGMOD 2016)

• In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails
• But serializability is not violated if we order T2 before T1

16

TicToc (SIGMOD 2016)

• In the schedule above, existing OCC protocols (including Silo) would abort
transaction T2 since its validation of “read x” will fails
• But serializability is not violated if we order T2 before T1
• Key idea: dynamically determine the order of transactions based on the

data access pattern
• The determined logical order can be different from the physical time order

17

TicToc — Record Layout

18

Each tuple contains a locking bit and two timestamps

For a read: load the timestamps together with the tuple data
The timestamps are updated during validation and write phases

Locking bits wts (write timestamp) rts (read timestamp)
0 63

TicToc — Validation Phase
Phase 1: Lock the write set

19

TicToc — Validation Phase
Phase 1: Lock the write set

Phase 2: Compute the commit
timestamp

20

TicToc — Validation Phase
Phase 1: Lock the write set

Phase 2: Compute the commit
timestamp

Phase 3: Validate the read set

21

Silo vs. TicToc
Silo aborts T2

TicToc may commit
both transactions

22

Silo vs. TicToc

23

Phase 1 is identical
Main difference is in the validation phase

Multi-Version Concurrency Control
Version chain

24

wts
=12

rts
=20

wts
=5

rts
=12

wts
=1

rts
=5

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read

Multi-Version Concurrency Control
Version chain

25

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read
Advantages

• Read-only transaction can read slightly stale data to avoid conflicts
• An early read does not conflict with a later write

wts
=12

rts
=20

wts
=5

rts
=12

wts
=1

rts
=5

Multi-Version Concurrency Control
Version chain

26

Acquire a timestamp at the beginning of the transaction
Use the allocated timestamp to determine which version to read
Advantages

• Read-only transaction can read slightly stale data to avoid conflicts
• An early read does not conflict with a later write

Disadvantages
• Overhead of managing multiple versions (e.g., garbage collect)

wts
=12

rts
=20

wts
=5

rts
=12

wts
=1

rts
=5

Basis Factors

Different choices of basis factors have significant impact on performance

If not picking carefully, the effects of basis factors will hide the effects of
concurrency control protocols

27

High-Contention Optimizations
Optimization 1: Commit-time updates

• Delay blind writes to the end of the transaction

28

High-Contention Optimizations
Optimization 1: Commit-time updates

• Delay blind writes to the end of the transaction

Optimization 2: Timestamp splitting
• Use different timestamps to manage different attributes (similar to field-level locking)

29

Evaluation – Effects of Basis Factors

Different choices of basis factors have significant impact on performance

30

Evaluation – Performance Overview

31

Performance gap between OSTO (Silo)
and TSTO (TicToc) is small except for
high-contention TPC-C
MVCC has worse performance at low
contention due to overhead

Evaluation – Cross-System Comparison

32

Evaluation – Optimizations

33

The optimizations
improve performance
for all protocols at
high contention,
especially for MVCC

Q/A – Modern OCC

34

How do updaters improve the performance of read-modify-write?
What’s the intuition behind the following claim?
• “OCC can perform surprisingly well even under high contentions on multi-

core main memory systems.”
Why need to lock the entire write set?
We focus too much on experimental results nowadays
Overfitting to the studied workloads?
Why these basis factors not found out in previous papers?
How to automate the two optimizations?

Next Lecture
Submit review for
• Clemens Lutz, et al. Pump Up the Volume: Processing Large Data on GPUs

with Fast Interconnects, SIGMOD 2020 (best paper award)

35

http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/nvlink-gpu.pdf

