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ABSTRACT CCS CONCEPTS

There has been significant amount of excitement and recent
work on GPU-based database systems. Previous work has
claimed that these systems can perform orders of magnitude
better than CPU-based database systems on analytical
workloads such as those found in decision support and
business intelligence applications. A hardware expert would
view these claims with suspicion. Given the general notion
that database operators are memory-bandwidth bound, one
would expect the maximum gain to be roughly equal to the
ratio of the memory bandwidth of GPU to that of CPU. In
this paper, we adopt a model-based approach to understand
when and why the performance gains of running queries
on GPUs vs on CPUs vary from the bandwidth ratio (which
is roughly 16X on modern hardware). We propose Crystal, a
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1 INTRODUCTION

In the past decade, special-purpose graphics processing
units (GPUs) have evolved into general purpose computing

devices, with the advent of general purpose parallel program-
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ABSTRACT

GPUs have long been discussed as accelerators for database
query processing because of their high processing power and
memory bandwidth. However, two main challenges limit the
utility of GPUs for large-scale data processing: (1) the on-
board memory capacity is too small to store large data sets,
yet (2) the interconnect bandwidth to CPU main-memory is
insufficient for ad hoc data transfers. As a result, GPU-based
systems and algorithms run into a transfer bottleneck and
do not scale to large data sets. In practice, CPUs process
large-scale data faster than GPUs with current technology.
In this paper, we investigate how a fast interconnect can
resolve these scalability limitations using the example of
NVLink 2.0. NVLink 2.0 is a new interconnect technology
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Figure 1: NVLink 2.0 eliminates the GPU’s main-
memory access disadvantage compared to the CPU.
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GPU architecture

Challenges of GPU database
Paper 1: Crystal GPU database
Paper 2: NVLink GPU database
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CPU vs. GPU

ALU = ALU
Control
ALU = ALU

CPU

CPU: A few powerful cores with large caches. Optimized for sequential
computation



CPU vs. GPU
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CPU GPU

CPU: A few powerful cores with large caches. Optimized for sequential
computation

GPU: Many small cores. Optimized for parallel computation



CPU vs. GPU — Processing Units

1990 2000 2010

40 Years of Microprocessor Trend Data

Nvidia

| Throughput | __ Power | Throughput/Power

Intel Skylake 128 GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt



CPU vs. GPU — Memory Bandwidth
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GPU has one order of magnitude higher memory bandwidth than CPU
Memory Bandwidth is the bottleneck for in-memory analytics
A natural idea: use GPUs for data analytics



GPU-DB Limitations

Limitation 1: Low interconnect bandwidth
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GPU-DB Limitations

Limitation 1: Low interconnect bandwidth
Limitation 2: Small GPU memory capacity
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GPU-DB Limitations

_imitation 1: Low interconnect bandwidth
_imitation 2: Small GPU memory capacity
_imitation 3: Coarse-grained cooperation of CPU and GPU
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Paper 1: Crystal GPU DB

A Study of the Fundamental Performance
Characteristics of GPUs and CPUs
for Database Analytics
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ABSTRACT CCS CONCEPTS

There has been significant amount of excitement and recent
work on GPU-based database systems. Previous work has
claimed that these systems can perform orders of magnitude
better than CPU-based database systems on analytical
workloads such as those found in decision support and
business intelligence applications. A hardware expert would
view these claims with suspicion. Given the general notion
that database operators are memory-bandwidth bound, one
would expect the maximum gain to be roughly equal to the
ratio of the memory bandwidth of GPU to that of CPU. In
this paper, we adopt a model-based approach to understand
when and why the performance gains of running queries
on GPUs vs on CPUs vary from the bandwidth ratio (which
is roughly 16X on modern hardware). We propose Crystal, a
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In the past decade, special-purpose graphics processing
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GPU Database Operation Mode

Coprocessor mode: Every query loads data from CPU memory to
GPU

GPU-only mode: Store working set in GPU memory and run the
entire query on GPU
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CPU-only vs. Coprocessor
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Key observation: With efficient implementations that can saturate memory bandwidth

GPU-only > CPU-only > coprocessor »



Star-Schema Benchmark

Platform CPU GPU
Model Intel i7-6900 Nvidia V100
Cores 8 (16 with SMT) | 5000
Memory Capacity | 64 GB 32GB
L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -
Read Bandwidth | 53GBps 880GBps Crystal-based implementations always
Write Bandwidth | 55GBps 880GBps :
i ) 107 Bos saturate GPU memory bandwidth
L2 Bandwidth - 2.2TBps
L3 Bandwidth | 157GBps - GPU is on average 25X faster than CPU
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Paper 2: GPU DB with NVLink

Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects
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ABSTRACT

GPUs have long been discussed as accelerators for database
query processing because of their high processing power and
memory bandwidth. However, two main challenges limit the
utility of GPUs for large-scale data processing: (1) the on-
board memory capacity is too small to store large data sets,
yet (2) the interconnect bandwidth to CPU main-memory is
insufficient for ad hoc data transfers. As a result, GPU-based
systems and algorithms run into a transfer bottleneck and
do not scale to large data sets. In practice, CPUs process
large-scale data faster than GPUs with current technology.
In this paper, we investigate how a fast interconnect can
resolve these scalability limitations using the example of
NVLink 2.0. NVLink 2.0 is a new interconnect technology
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Figure 1: NVLink 2.0 eliminates the GPU’s main-
memory access disadvantage compared to the CPU.

ACM Reference Format:

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and Volker
Markl. 2020. Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 17 pages.

16



Emerging Fast Interconnect
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Fast Interconnect can solve the PCle bottleneck

Emerging alternative interconnect technologies:
* NVLink
* Infinity Fabric
« Compute Express Link (CXL)
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NVLink Bandwidth and Latency

NVLink has much higher
bandwidth than PCle
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(a) NVLink 2.0 vs. CPU & GPU Interconnects.
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NVLink Bandwidth and Latency

NVLink has much higher
bandwidth than PCle

NVLink has comparable bandwidth
as CPU local memory
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(b) NVLink 2.0 vs. CPU memory.
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NVLink Bandwidth and Latency

NVLink has much higher
bandwidth than PCle

NVLink has comparable bandwidth
as CPU local memory

NVLink bandwidth has much lower
bandwidth than GPU memory
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(b) NVLink 2.0 vs. CPU memory.
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GPU Transfer Methods

Table 1: An overview of GPU transfer methods.

Method Semantics | Level | Granularity | Memory
Pageable Copy

Staged Copy Pageable
Dynamic Pinning | Push SwW Chunk

Pinned Copy Pinned
UM Prefetch Unified
UM Migration OS Page Unified
Zero-Copy Pull Pinned
Coherence HW | Byte Pageable

W Pageable M Pinned M Unified
— PCIl-e30 -- NVLink2.0

PCI-e 3.0 NVLink 2.0

Pageable Copy 0.?5 |
Staged Copy 10.73 :
Dynamic Pinning {* 0.26 |
Coherence : Unsupported |
Pinned Copy '0.74 |
Zero Copy : 0.77 |
Unified Migration % 0.25 |
Unified Prefetch ¢.54 |
0 1

2 3 4 0 1 2 3 4
Throughput (G Tuples/s)

Figure 12: No-partitioning hash join using different

transfer methods for PCI-e 3.0 and NVLink 2.0.

Pinned copy and zero copy can saturate PCle bandwidth
Coherence can saturate NVLink bandwidth
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Non-Partitioned Hash Join Methods

Build phase: build the hash table using inner relation R

Probe phase: lookup hash table for each record in outer relation S
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Hash Join — Build Phase

Build phase: build the hash table using inner relation R

a CPU |Gy GPU |:
CPU | <G| G PU D { _ NVLink 2.0

L_INVLink 2.0 e 2
...................... »{hash(key) d (j)—-» b :
: i~

) T
O virtual memory mapping

aad Rad Rad s
Y

(a) Data and hash table in (b)Datain CPU memory and

CPU memory. hash table spills from GPU
memory into CPU memory.
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Hash Join — Probe Phase

Probe phase: lookup hash table for each record in outer relation S

--------------------------
.....
"

g memcopy .........
I
4 CPU || GPU CPU |<uumpy| GPU |:
il NVLink 20L__t] ~ EL_ NVLink 2.0
hash(key)|[El_1 = = T »hash(key) ﬁ
#
o~ o4

(a) Data and hash table in (b)Datain CPUmemory and
GPU memory. hash table in GPU memory.



Hash Join

CPU |Gl GPU |:
CPU (<G| PU H NVLink 2.0
; NVLink 2.0 hash(key) hash(key)
# hash(key)-=--==--- » hash(ke
: (key) (key) .@@ %@
0 ’é) . @memeopy .

(a) Cooperatively process| (b) Build hash table on
join on CPU and GPU with| GPU, copy the hash table to
hash table in CPU memory. | processor-local memories,

and then cooperatively
probe on CPU and GPU.

This hybrid design subsumes the previous designs in the paper
« Dynamically schedule tasks to both CPU and GPU



Hash Table Locality

Hash Table Location: ™ Gpu B cpu ™ rcPU B rGPU
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Figure 14: Join performance of the GPU when the hash
table is located on different processors, increasing the
number of interconnect hops from 0 to 3.

Best performance achieved when the hash table is in GPU memory



Scaling Data Size in TPC-H Q6

® CPU PCIl-e3.0 & NVLink 2.0
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Figure 15: Scaling the data size of TPC-H query 6.

TPC-H Q6 contains a simple scan + aggregation with no join
Running the query on CPU leads to the highest performance
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Scaling the Probe Side Relation

® CPU (PRA) PCI-e3.0 1 NVLink 2.0
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Figure 16: Scaling the probe-side relation.

NVLink is faster than both PCle and CPU only



Scaling the Build Side Relation

. ® CPU (PRA) PCl-e3.0 # NVLink2.0 - NVLink 2.0 Hybrid HT
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Figure 17: Scaling the build-side relation.

Performance drops when the hash table does not fit in GPU memory
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Discussion

Query Type SPJA analytical queries Non-partitioned hash join
Execution Model Data fits in GPU memory Coprocessor
Interconnect PCle 3.0 NVLink 2.0

Research question: How to maximize GPU database performance
with different interconnect technology?
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Latest A100 GPU
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Available in 40GB and 80GB memory versions, A100 80GB debuts the
world’s fastest memory bandwidth at over 2 terabytes per second (TB/s) to

run the largest models and datasets.
November 16, 2020
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Q/A — GPU Databases

Some parameters (like batch size for task scheduling) complicates
the configuration of such a database?

Techniques proposed in this paper work for operations besides joins?

What characteristics make the GPU's join processing rate faster than
CPU's?

The hash table placement decision appears to be completely discrete
General optimization for DB with heterogeneous hardware?

Optimizing DB with TPU?
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Next Lecture

Submit review for
+ Jiacheng Yang, et al. F1 Lightning: HTAP as a Service, VLDB 2020
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