WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 26: HTAP

Xiangyao Yu
12/2/2020

Project Presentation Schedule

Each team has a 10-min slot: 8-min presentation + 2-min Q/A

Day 1 (Mon., Dec. 7) Project Name

1:05--1:15 The SADS Index: Optimizing Search and Insert Operations on a B-Tree Structure
1:15--1:25 Automatic DBMS configuration tuning using Reinforcement Learning techniques
1:25--1:35 One-Phase Commit: A new atomic commit protocol via global log accessibility
1:35--1:45 A Survey on Hybrid Transactional and Analytical processing

1:45 -- 1:55 Survey: Classifying Modern Indexes

1:55 -- 2:.05 Empirical Evaluation of Indexing on Modern Database Systems

Day 2 (Wed., Dec. 9) Project Name

1:05--1:15 Efficient updates and inserts with learned indexes

1:15--1:25 Evaluation of Data Compression in GPU Database

1:25--1:35 A survey on recent join algorithms for modern multi-core processor system
1:35--1:45 Comparison of Modern Indexing Approaches on Persistent Memory

1:45 -- 1:55 Data driven techniques for Log Structured Merge Trees

1:55 -- 2:05 Join Optimization with Map Reduce

Today’s Papers: HTAP

F1 Lightning: HTAP as a Service

Jiacheng Yang

Junxiong Zhou

lan Rae Jun Xu Jeff Shute Zhan Yuan
Qiang Zeng XiZhao JunMa Ziyang Chen
Jeremy Wood Goetz Graefe Jeff Naughton

Kelvin Lau
Yuan Gao Qilin Dong
John Cieslewicz

Google LLC
f1-lightning-paper@google.com

ABSTRACT

The ongoing and increasing interest in HTAP (Hybrid Transactional
and Analytical Processing) systems documents the intense interest
from data owners in simultaneously running transactional and analyt-
ical workloads over the same data set. Much of the reported work on
HTAP has arisen in the context of “greenfield” systems, answering
the question “if we could design a system for HTAP from scratch,
what would it look like?”” While there is great merit in such an ap-
proach, and a lot of valuable technology has been developed with it,
we found ourselves facing a different challenge: one in which there
is a great deal of transactional data already existing in several trans-
actional systems, heavily queried by an existing federated engine
that does not “own” the transactional systems, supporting both new
and legacy applications that demand transparent fast queries and

tunmnnatinean Fenma thin anahinatine Thin annae cnanetn ne asve danice

VLDB 2020

Simply put, while supporting HTAP well is of critical importance,
for us a greenfield approach was not the best option to enable HTAP
processing in Google’s ecosystem. In Google, we use multiple
transactional data stores that serve large legacy and new workloads,
and we have federated query engines that are loosely coupled with
these systems. We want a single HTAP solution that can be enabled
across the different options for transactional storage to avoid costly
migrations and to permit flexibility in the design of transactional
storage systems, and we want to benefit from separation of concerns
by allowing transactional systems to focus on transaction processing
and query engines to focus on query processing, with an emphasis
on analytical queries.

Accordingly, we have designed, implemented, and deployed
Lightning, a loosely coupled HTAP solution that we term “HTAP-
as-a-service.” By “HTAP-as-a-service” we mean that Lightning can

HTAP: Hybrid Transactional/Analytical Processing

Hybrid transactional/analytical processing (HTAP), a term created
by Gartner Inc in 2014

Hybrid transactional/analytical processing (HTAP) is an

emerging application architecture that "breaks the wall"

between transaction processing and analytics. It enables more
informed and "in business real time" decision making. ’ ’

Key advantage: reducing time to insight

OLTP vs. OLAP

Transactions
8 Takes hours for
\ conventional databases
 Takes seconds or minutes
> for HTAP

& — 5 m—)

OLTP database OLAP database
(Update Intensive) (Read Intensive, rare updatesf))

HTAP Design Options]

Single System for OLTP and OLAP
« Using Separate Data Organization for OLTP and OLAP
« Same Data Organization for both OLTP and OLAP

Separate OLTP and OLAP Systems
» Decoupling the Storage for OLTP and OLAP
» Using the Same Storage for OLTP and OLAP

[1] Ozcan, Fatma, Yuanyuan Tian, and Pinar Téziin. "Hybrid transactional/analytical processing: A survey." ICMD, 2017.

HTAP Design Options]

Single System for OLTP and OLAP
« Using Separate Data Organization for OLTP and OLAP
« Same Data Organization for both OLTP and OLAP

Separate OLTP and OLAP Systems
» Decoupling the Storage for OLTP and OLAP « F1 Lightning
» Using the Same Storage for OLTP and OLAP

[1] Ozcan, Fatma, Yuanyuan Tian, and Pinar Téziin. "Hybrid transactional/analytical processing: A survey." ICMD, 2017.

Benefits of Separating OLTP and OLAP

Examples: F1 lightning, TiDB, SAP HANA, Oracle database (partially)

Separation of concerns
« The OLTP and OLAP may be implemented and used by different teams

Independent performance optimizations

Compatible with existing OLTP services

HTAP with Separate OLTP and OLAP

oe | M) | oue

Log shipping

Log replay

Important metrics:
« OLTP and OLAP throughput and latency
* Interference between the two engines
* Freshness of OLAP queries

F1 Lightning Architecture

R

~_

Changepump

(section 4.8)

/

Transactional | Wwrites bata ! Lo
client 9
Analytical reads (SQL Processor w
client (section 5.1)
F1Query
Query engine
(section 5)

Change Memory-resident
subscriber deltas
(section 4.8.1) (section 4.3) \
Pushdown Log-structured |
evaluator merge reader
(section 5.2) (section 4.5)

>

] Disk-resident deltas
< (section 4.4)

N\

Distributed filesystem

_

Lightning server /

Lightning

(section 4)

~_

10

Read Semantics

MVCC with snapshot isolation =

llllll

Queryable window
« Maximum safe timestamp
* Minimum safe timestamp
* Typical queryable window is 10 hours

11

Tables and Deltas

Delta: partial row versions g |
* Insert: all columns
« Update: modified columns L=]

* Delete: no column value

12

Tables and Deltas

Delta: partial row versions i = e AN
* Insert: all columns | | _L_| 1
» Update: modified columns i L= || e] e
* Delete: no column value g

Memory resident deltas M PAGE N
e Row store B-iree PAGE HEADER | RH1[0962] [PAGE HEADER [0962|7658

Jane |30 | RH2[7658] John 3859 [5523 |
Disk resident deltas e otz s ==

« Data part: PAX (Partition Attributes Across) format
» Index part: sparse B-tree on the primary keys

Jane | John | Jim l Susan ‘

o[52[4520

13

Tables and Deltas

Delta: partial row versions | o (| [z

* Insert: all columns | ___| 1 | l
* Update: modified columns | L[| e] e
* Delete: no column value Lgnming
Memory resident deltas M PAGE N
e Row store B-iree PAGE HEADER | RH1[0962] [PAGE HEADER [0962|7658
Jane |30 | RH2[7658] John 3859 [5523 |
Disk resident deltas sl ool -

Jane | John | Jim l Susan ‘

« Data part: PAX (Partition Attributes Across) format
» Index part: sparse B-tree on the primary keys

Delta merging

Delta compaction
» Rewrite smaller deltas into a single large delta

‘30|52|45 [20

14

Schema Management

Id INT) TS (INT) OP(ENUM) Name (STRING) Address (STRUCT)

1 150 UPDATE NotSet {city: “Madison”
state: “WI”}

1 125 UPDATE NotSet {city: “Milwaukee”
state: “WI”'}

1 100 INSERT John Smith {city: “Seattle”
state: “WA”}

2 50 INSERT Jane Doe {city: “San Jose”
state: “CA”}

(a) Partial row versions conforming to a logical schema.

Logical column Physical column

Id Id

TS TS

OoP OP
Address Address

Address.City City
Address.State State

(b) A mapping between logical and phys-

ical columns.

Id (INT) TSANT) OP(INT) Name (STRING) Address (STRING) City (STRING) State (STRING)
1 150 UPDATE NotSet {city: “Madison” Madison NotSet
state: “WI”}
1 125 UPDATE NotSet {city: “Milwaukee” Milwaukee WI
state: “WI”}
1 100 INSERT John Smith {city: “Seattle” Seattle WA
state: “WA”}
2 50 INSERT Jane Doe {city: “San Jose” San Jose CA
state: “CA”}

(c) Partial row versions conforming to a physical schema.

Benefits of separating logical and physical schemas
 Allows alternative storage layouts for the same logical data

 Facilitates metadata-only schema changes (e.g., adding and dropping a column)

15

Change Pump

Subscription

* A lightning server subscribes to e - |
Changepump with table and key range

Change data

« Checkpoint timestamp: changes prior to it have been delivered (use it to
update max safe timestamp)

16

Change Pump

Subscription

* Alightning server subscribes to
Changepump with table and key range

Change data

« Checkpoint timestamp: changes prior to it have been delivered (use it to
update max safe timestamp)

Sharding
« Requires Shuffle: Changepump and Lightning partition strategy can be different

Caching
« Speedup data replication across replicas of Lightning servers
« Speedup recovery if a Lightning server fails

17

Fault Tolerance

Query failures
* Replicate Lightning servers: they can all serve queries

18

Fault Tolerance

Query failures
* Replicate Lightning servers: they can all serve queries

Ingestion failures
« Changepump server crash -> Replicate Changepump servers

« Qutage of OLTP system -> Switch to a healthy datacenter when slowness is
detected

19

Fault Tolerance

Query failures
* Replicate Lightning servers: they can all serve queries

Ingestion failures
« Changepump server crash -> Replicate Changepump servers

« Qutage of OLTP system -> Switch to a healthy datacenter when slowness is
detected

Table-level failures
« Queries to blacklisted tables are served by the OLTP system

« Case 1: data corruption
« Case 2: lightning cannot keep up with the log (e.g., high rate of change)

20

Evaluation — Freshness

12m |
W A
Bm iy " ".‘\"*Ikr\hﬂ‘]\"' VJ pMLs \I\H}I}‘l" ff'! Lr‘JM WJ"MN‘A J 'ﬂl rl "H' i\ w" H"' *‘ /W “ 'H‘ "‘W

2m |

D 2
12:00 28Jan 12:00 29Jan 12:00 30 Jan 12:00 3Jan

Queries read data that is 7—12 min stale
Research question: how to improve freshness of queries?

21

Evaluation — CPU Efficiency Improvement

Small Medium Large

Data source CPU time speed-up 2.3x 11.8x 7.6x
F1 server CPU time speed-up 1.5x 169x 3.8x

Lightning is faster and more efficient than the OLTP engines
(e.g., F1 DB)

22

Hyper

HyPer: A Hybrid OLTP&OLAP Main Memory Database
System Based on Virtual Memory Snapshots

Alfons Kemper', Thomas Neumann?

Fakultdt fiir Informatik
Technische Universitdt Miinchen
Boltzmannstrafle 3, D-85748 Garching

lkemper@in.tum.de
2neumann@in.tum.de

Abstract—The two areas of online transaction processing
(OLTP) and online analytical processing (OLAP) present differ-
ent challenges for database architectures. Currently, customers
with high rates of mission-critical transactions have split their
data into two separate systems, one database for OLTP and
one so-called data warehouse for OLAP. While allowing for
decent transaction rates, this separation has many disadvantages
including data freshness issues due to the delay caused by only pe-

ICDE 2011

database system. In addition, a separate Data Warehouse
system is installed for business intelligence query processing.
Periodically, e.g., during the night, the OLTP database changes
are extracted, transformed to the layout of the data warehouse
schema, and loaded into the data warehouse. This data staging
and its associated ETL (Extract-Transform—Load) obviously
incurs the problem of data staleness as the ETL process can

23

HTAP Design Options]

Single System for OLTP and OLAP
« Using Separate Data Organization for OLTP and OLAP
« Same Data Organization for both OLTP and OLAP « Hyper

Separate OLTP and OLAP Systems
» Decoupling the Storage for OLTP and OLAP
» Using the Same Storage for OLTP and OLAP

[1] Ozcan, Fatma, Yuanyuan Tian, and Pinar Tézun. "Hybrid transactional/analytical processing: A survey." ICMD, 2017. 24

Virtual Memory Snapshots

e T
[

' [
..

OLTP Requests /Tx
B an an o

.'/-‘_.4'\\
L0
I‘l'a ,-"'

s \ 7 P
L \ .f s hY

\ | i \
o {O)o|
"\4____ / \'-».._'/" "-_‘ V/’

Virtual Memory

Create consistent database snapshot for OLAP queries to read

Transactions run with copy-on-write to avoid polluting the snapshots
25

Fork()

Linux Programmer's Manual

fork() creates a new process by duplicating the calling process. The
new process is referred to as the child process. The calling process
IS referred to as the parent process.

Does not copy all the memory pages
Does copy the parent’s page table (all pages set to readonly mode)

Copy-on-write (COW)
« If any page is modified by either parent or child process, a new
page is created for the corresponding process

26

Fork-Based Virtual Snapshots

H
[SR S S J I — |

cevefes

................

OLAP Queries

........... :4—.—-—.—.—.

s OLTP Requests /Tx

OLTP Requests /Tx

- o oo e on i
(d) ‘,"’
o))
o1 &

O
h Virtual Memory

Y
©
)
a
o
Y

o) (o/a)(o!

Virtual Memory

OLTP process OLAP process OLTP process OLAP process

Page tables /\ /\ /\
Page Page | ref=1

ref=2 |
- ref=1 27

Evaluation — Memory Consumption

A.OLTPonly - ' ' r '
B. Hybrid (idle OLAP;
C. Hybrid (idle OLAP, respawned *

6000
1
5000

4000

3000

Memory Consumption [MB]

2000

1

1000

0 1 | 1 1 1 1 1 | 1
0 500000 1e+406 1.5e+06 2e+06 2.5e4+06 3e+06 3.5e+06 4e+06 4.5e+06
Transactions

Summary

Separating OLTP and OLAP

Examples: F1 lightning, TiDB, SAP HANA, Oracle
database (partially)

Advantages:
« Separation of concerns
* Independent performance optimizations
« Compatible with existing OLTP services

Unified storage for OLTP and OLAP

Examples: Hyper, SingleStore, Greenplum, MySQL,
PostgreSQL

Advantages:

29

Q/A - HTAP

Paper contains huge amount of information
Which type of HTAP system is more popular?
How does Lightning compare to greenfield systems in performance?

The paper has little evaluation

30

