WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 3: Buffer Management

Xiangyao Yu
9/14/2020

Discussion Highlights

Is it possible to make GRACE hash join work when | M | < /| R| X F ?
For example, IM1=10,F =1, Rl =1000. You may modity the
GRACE hash join algorithm as described in the paper.

« Multiple phases of partitioning. For k partition phases, we can get | M ¥
partitions

Is it possible for a sort-merge join algorithm to outperform a hash-based
join algorithm? If yes, when can this happen?

« Sort-merge join can out-perform hash-based join when both relations are
already sorted based on the join key

Today’s Paper: Buffer Management

An Evaluation of Buffer Management Strategies
for Relational Database Systems

Hong-Tai Chou"
David). DeWitt

Computer Sciences Department
University of Wisconsin

ABSTRACT

In this paper we present a new algorithm,
DBMIN, for managing the bulfer pool of a relational
database management system. DBMIN is based on a
new model of relational query behavior, the query
locality set model (QLSM). Like the hot set model,
the QLSM has an advantage over the stochastic models
duc io its ability to predict future reference behavior.
However, the QLSM avoids the potential problems of
the hot set model by scparating the modeling of refer-
ence hehavior from any particular bulfer management
algorithm. Afier introducing the QLSM and describing
thc DBMIN algorithm, we present a performance
evaluation methodology for cvaluating buffer manage-
ment algorithms in a multiuser environment. This
methodology employed a hybrid model that combines
fecatures of both trace driven and distribution driven
simulation models. Using this model, the performance
of the DBMIN algorithm in a multiuscr environment is
compared with that of the hot sct algorithm and four

Algorithmica 1986

new model of relational query behavior, the query
locality set model (QLSM). Like the hot set model
|Sacc82], the QLSM has an advantage over the stochas-
tic modcls duc to its ability 10 predict fulure reference
behavior. However, the QLSM avoids the potential
problems of the hot set model by scparating the model-
ing of reference hehavior from any particular buffer
management algorithm. Aller introducing the QLSM
and describing the DBMIN algorithm, the performance
of the DBMIN algorithm in a multiuser ¢nvironment is
comparcd with that of the hot sct algorithm and four
more traditional buffer replacement algorithms.

A number of factors motivated this research.,
Firsl, alihough Stoncbraker [Ston81] convincingly
arguced that conventional virtual memory page replace-
ment algorithms (¢.g. LRU) were generally not suitable
for a relational database environment, the arca ol buffer
management has, for the most part, heen ignored (con-
trast the activity in this arca with that in the con-
currency control arca). Scecond, while the hot sct

Agenda

Buffer management basics

Query locality set model (QLSM)
DBMIN algorithm

Other buffer management algorithms

Evaluation

Buffer Management Basics

Basic Concepts (covered in CS 564)

CPU

Buffer | Buffer

Buffer

Memory

A

Disk

A database management system (DBMS)
manipulate data in memory

« Data on disk must be loaded to memory before
processed

The unit of data movement is a page

Page replacement policy (what pages should stay
iIn memory?)

* LRU (Lease recently used)

« Clock

 MRU (Most recently used)

 FIFO, Random, ...

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
— N
N~ -
Disk
N~ -

Incoming requests

0,1,2,3,0,1,2,4,0,1,2,5, ...

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 3
-~ N
N— A
Disk
N— -

Incoming requests

0,1,2,3,0,1,2,4,0,1,2,5, ...

Cold start misses: load pages
0—3 to memory

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0

Page 1

Page 2

Page 3

—
S~

Disk

—
]

Incoming requests

6:+23;0,1,2,4,0,1,2,5, ...

Cache hits on pages 0—2

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page 0 | Page 1 | Page 2 | Page 4
Page3
-~ N
N— A
Disk
N— -

Incoming requests

6:+23;6,+2,4,0,1,2,5, ...

Page 4 replaces page 3 in the buffer
since page 3 is the least-recently
used page

10

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0 | Page 1

Page 2 | Page 4

—
S~

—
]

Disk

Incoming requests

Cache hits on pages 0—2

11

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 5
Page4
-~ N
N— A
Disk
N— -

Incoming requests

Page 5 replaces page 4 in the buffer
since page 4 is the least-recently
used page

12

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory
— N
N~ -
Disk
N~ -

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...

13

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0

Page 1

Page 2

Page 3

—
S~

Disk

—
]

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...

Cold start misses: load pages
0—3 to memory

14

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page 4 | Page 1 | Page 2 | Page 3
Page O
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..

Page 4 replaces page 0 since page O is
the least-recently used page

15

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 4 | Page 0 | Page 2 | Page 3

Paget
—
N—

v

Disk

Incoming requests

6:+23:4,0,1,2,3,4, ...

Page O replaces page 1 since page 1 is
the least-recently used page

Each future access will replace the
page that will be immediately accessed

16

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 4

Page 0

Page 2

Page 3

—
S~

Disk

—
]

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...

Page O replaces page 1 since page 1 is
the least-recently used page

Each future access will replace the
page that will be immediately accessed

Under LRU, all accesses in this pattern
are cache misses!

17

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 3
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..

18

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 4
Page3
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..

Page 4 replaces page 3 since page 3 is
the most-recently used page

19

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory

Page 0 | Page 1

Page 2 | Page 4

—
S~

—
]

Disk

Incoming requests

Cache hits on pages 0—2

20

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 3 | Page 4
Page 2
-~ N
N— A
Disk
N— -

Incoming requests

0142340123, 4, ..

Page 3 replaces page 2 since page 2 is
the most-recently used page

LRU: all accesses are misses
MRU: 25% of accesses are misses

Selection of replacement policy depends

on the data access pattern o1

Query Locality Set Model (QLSM)

Query Locality Set Model

Observations
« DBMS supports a limited set of operations
« Data reference patterns are regular and predictable (e.g., from parser)
« Complex reference patterns can be decomposed into simple patterns

23

Query Locality Set Model

Observations
« DBMS supports a limited set of operations
» Data reference patterns are regular and predictable
« Complex reference patterns can be decomposed into simple patterns

Reference pattern classification
« Sequential
« Random
 Hierarchical

Locality set: the appropriate buffer pool size for each query

24

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
« E.g., select on an unordered relation
* Locality set: one page
* Replacement policy: any

25

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
« E.g., select on an unordered relation
* Locality set: one page
* Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
« E.g., sort-merge join with duplicate join keys
* Locality set: size of largest cluster
« Replacement policy: LRU or FIFO (buffer size = cluster size), MRU (otherwise)

0p

R
0
1
1
1
2
3
4

26

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
« E.g., select on an unordered relation
* Locality set: one page
* Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
« E.g., sort-merge join with duplicate join keys
* Locality set: size of largest cluster
« Replacement policy: LRU or FIFO (buffer size = cluster size), MRU (otherwise)

Looping Sequential (LS): repeatedly read something sequentially

* E.g. nested-loop join
 Locality set: size of the file being repeated scanned.

* Replacement policy: MRU
27

QLSM — Random References

Independent random (IR): truly random accesses
» E.g., index scan through a non-clustered (e.g., secondary) index
 Locality set: one page or b pages (b unique pages are accessed in total)
* Replacement: any

28

QLSM — Random References

Independent random (IR): truly random accesses
* E.g., index scan through a non-clustered (e.g., secondary) index

 Locality set: one page or b pages (b unique pages are accessed in total)
* Replacement: any

Clustered random (CR): random accesses with some locality

* E.g., join between non-clustered, non-unique index as inner relation and
clustered, non-unique outer relation

 Locality set: size of the largest cluster f
» Replacement policy : R.index }
LRU or FIFO (buffer size = cluster size) }
MRU (otherwise) 1] 1 5
" g

29

QLSM — Hierarchical References

Straight hierarchical (SH): single traversal of the index
« Similar to SS

Hierarchical with straight sequential (H/SS): traversal followed by straight
sequential on leaves
« Similar to SS

Hierarchical with clustered sequential (H/CS): traversal followed by
clustered sequential on leaves
« Similar to CS

Looping hierarchical (LH): repeatedly traverse an index
« Example: index nested-loop join
 Locality set: first few layers in the B-tree
» Replacement: LIFO

30

Summary of Reference Patters
mm

Straight sequential (SS)
Clustered sequential (CS)

Looped sequential (LS)

Independent random (IR)
Clustered random (CR)

Straight hierarchical (SH)

Hierarchical with straight
sequential (H/SS)

Hierarchical with clustered
sequential (H/CS)

Looping hierarchical (LH)

File scan

Sort-merge join with duplicate keys
Nested-loop join

non-clustered index scan

Non-clustered, non-unigue index as
inner relation in a join

Single index lookup

Index lookup + scan

Index lookup + clustered scan

Index nested-loop join

1 page
Cluster size
Size of scanned file
< Size of scanned file
lorb

Same as CS

Same as SS

Same as CS

First few layers in the B-tree

LRU/FIFO
LRU
MRU

any

LIFO

31

DBMIN algorithm

DBMIN

For each open file operation
* Allocate a set of buffers (i.e., locality set)

» Choose a replacement policy
« Each open file instance has its own set of buffers
* |f two file instances access the same page, they share the page

Predicatively estimate locality set size by examining the query plan
and database statistics

Admission control: a query is allowed to run if its locality sets fit in free
frames

33

Other Buffer Management Algorithms

Simple Algorithms

Replacement discipline is applied globally to all the buffers in the
system

« RAND

* FIFO (first-in, first-out)

« CLOCK

35

Sophisticated Algorithms

Replacement discipline is applied locally to each query or file instance
- DBMIN
« HOT (the hot set algorithm): always using LRU
« WS (the working set algorithm)
« Domain separation: LRU within each domain (e.g., an index level)

36

Evaluation

THROUGHPUT
0.50 +
0.40+

a —+ N
20 24 28 32

Except DBMIN and HOT,
performance of all the other
algorithms thrashes at high
concurrency

DBMIN outperforms HOT

37

Q/A — Buffer Management

Complexity of DBMIN over other algorithms?
What is a file instance?

Two file instances access the same page?
 Eviction due to owner but the other query still relies on it

Memory pages vs. global free list vs. locality set?

Modern RDBMSs use simple replacement policy?

Can we use an ML model instead to predict the reference patterns?
Optimize across file instances?

What is thrashing?

38

Group Discussion

Consider a nested loop join between R and S. Initially R and S are both
stored on disk. The buffer management policy is DBMIN.

*IRI=4
| S1=10
e |MI=6

* Q1: How many pages need to be read from disk to perform the join?

» Q2: Does the answer to Q1 change when | M | = 4? What is the buffer
management policy for R and S in this case?

39

Before Next Lecture

Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
* Title: Lecture 3 discussion. group ##
« Authors: Names of students who joined the discussion
« Summary submission Deadline: Tuesday 11:59pm

Before next lecture, submit review for

Patricia G. Selinger, et al., Access Path Selection in a Relational
Database Management System. SIGMOD 1979.

40

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/selinger.pdf

