WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 5: Query Optimization-2

Xiangyao Yu
9/21/2020



Announcements

To ask a question in-class
» Raise your hand
« With the instructor’s permission, ask in the order of hand raising

Switch to Zoom?

 Lecture recordings will be uploaded to uwmadison.app.box.com


http://uwmadison.app.box.com/

Discussion Highlights

EMP
mm TCARD =100 # data pages

NCARD = TCARD * 100 # tuples
DEPT.IDX_ENAME (clustered)
DEPT.IDX_DNAME (non-clustered)

Q1: What are the possible access paths on EMP?
1. Segment scan

2. Clustered index scan on ENAME
3. Non-clustered index scan on DNAME

SELECT
FROM
WHERE

ENAME
EMP
DNAME = ‘CS”;




Discussion Highlights

EMP
mm TCARD =100 # data pages

NCARD = TCARD * 100 # tuples
DEPT.IDX_ENAME (clustered)
DEPT.IDX_DNAME (non-clustered)

SELECT
FROM
WHERE

ENAME
EMP
DNAME = ‘CS”;

Q2: Assume selectivity factor F = 1/10 for predicate DNAME=‘CS’, which access

path should be picked for the query above?
Segment scan cost=100/P
ENAME index scan cost = NINDEX(I) + 100
DNAME index scan cost = (NINDEX(I)+10000) /10

(Assuming no caching in buffer pool)

Note: NINDEX(I) # 1~3




Today’s Paper: Query Optimization-2

An Overview of Query Optimization in Relational Systems
Surajit Chaudhuri

Microsoft Research
One Microsoft Way
Redmond, WA 98052
+1-(425)-703-1938

surajitc@microsoft.com

1. OBJECTIVE

There has been extensive work in query optimization since the
carly *70s, It is hard to capture the breadth and depth of this large
body of work in a short article. Therefore, I have decided to focus
primarily on the optimization of SQL queries in relational
dntabase systems and present my biased and incomplete view of
this field, The goal of this article is not to be comprehensive, but
rather to explain the foundations and present samplings of
significant work in this area. I would like to apologize to the many
contributors in this arca whose work I have failed to explicitly
ncknowledge due to oversight or lack of space. I take the liberty of
trading technical precision for case of presentation,

2. INTRODUCTION

Relational query languages provide a high-level “declarative”
Interface to access data stored in relational databases. Over time,
SQL [41] has emerged as the standard for relational query
languages, Two key components of the query evaluation
component of a SQL database system are the query optimizer and
the query execution engine.

The query exccution engine implements a set of physical
operators, An operator takes as input one or more data streams
and produces an output data stream. Examples of physical

PODS 1998

Index Nested Loop
(A.x = C.x)

TN

Merge-Join Index Scan C
(A.x=B.x)

N

Sort Sort

Table Scan A Table Scan B

Figure 1. Operator Tree

The query optimizer is responsible for generating the input for the
execution engine. It takes a parsed representation of a SQL query
as input and is responsible for generating an efficient execution
plan for the given SQL query from the space of possible execution

plans. The task of an optimizer is nontrivial since for a given SQL
mnerv there can he a laroe nimher of nnccihle aneratar trees:



Agenda

Query optimization components

« Search Space
 Cost estimation
* Enumeration algorithm

Other considerations



Query optimization components

SQL

Relational

‘ Parsing ‘ Engine

Query optimizer

‘ Execution engine ‘

‘ Storage engine ‘

]




Query optimization components

Search space includes plans that have low cost
Cost estimation is accurate

Enumeration algorithm is efficient



Search Space

Search space of System R
* Linear sequence of joins
 Avoiding Cartesian products
* No discussion of outerjoins
* No discussion of group by

« No discussion of multi-block queries



Search Space — Join Order
X
7\
X
VRN
X
7\
1

R4

R3

R R2

left-deep tree

Convention: right child is the inner relation

10



Search Space — Join Order
X
7\
X
VRN
X
7\
1

R4

R3
R R2

left-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

11



Search Space — Join Order

X X
VRN VRN
X R4 R4 X
VRN VRN
X R3 R3 X
VRN VRN
R1 R2 R2 R1
left-deep tree right-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

12



Search Space — Join Order

X 5 X
7\ VRN
X R4 5 / \ 5 R4 X
X / \ R3 / \ / \ R3 / \ X
/. R1 R2 R3 R4 /. '\
R1 R2 R2 R1
left-deep tree bushy tree right-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

Bushy tree may produce cheaper plans but are rarely considered

due to the explosion of search space .



Search Space — Cartesian Product

System R defers Cartesian products after all the joins

Evaluating Cartesian products early sometimes leads to cheaper plans
« Example: dimension tables in OLAP in a star schema

14



Search Space — Cartesian Product

System R defers Cartesian products after all the joins

Evaluating Cartesian products early sometimes leads to cheaper plans
« Example: dimension tables in OLAP in a star schema

Order
OrderNo
OrderDate
\ Fact table
Customer OrderNo . -
CustomerNo SalespersonID — Sma” dlmenSIOn tab|es
CustomerName CustomerNo
CustomerAddress| > JE- odNo
Ci DateKey
ity .
CityName
Salesperson gua?;ty
SalespersonlD otalPrice i Tear —> La rg e faCt table
SalespesonName / ty
City CityName
Munta -« State
Country

Figure 3. A Star Schema.

* Figure from “An Overview of Data Warehousing and OLAP Technology"



Search Space — Outer Join

One-sided outer joins are asymmetric and do not commute
« Join(R, SLOJT) =Join(R, S) LOJ T

Repeatedly apply this rule to move outer joins after regular joins;
regular joins can be freely reordered among themselves

16



Search Space — Group By

Example:

SELECT D.name, count(*)
FROM EMP as E, DEPT as D
WHERE E.DeptID = D.DeptID
GROUP BY D.name

E has 10000 tuples
D has 100 tuples

t 100
E.DeptlD,D.Name
Group By Y10000
COUNT

E.DeptiD=D.DeptiD

Join 10000 x 100

E: 10000 D: 100

Plan 1: Group by after join

17



Search Space — Group By

Example:

SELECT D.name, count(*)
FROM EMP as E, DEPT as D
WHERE E.DeptID = D.DeptID
GROUP BY D.name

E has 10000 tuples
D has 100 tuples

t 100
E.DeptiD,D.Name
Group By 10000
COUNT

E.DeptiD=D.DeptiD

Q 10000 x 100

E: 10000 D: 100

Plan 1: Group by after join

} 100

E.DeptiD=D.DeptiD
100x100

100
E.DepilD

1oooo D: 100

E: 10000

Plan 2: Group by before join

18



Search Space — Group By

Example:
E.DeptlD,D.Name t 100 } 100

Group By ) 10000 0 E.DeptID=D.DeptID
SELECT D.name, count(*) @ 100x100

FROM EMP as E, DEPT as D 100
WHERE E.DeptID = D.DeptID

E.DeptlD=D.DeptiD .
GROUP BY D.name op °P E.Depiin v
Join 10000 x 100 10000 D: 100

E has 10000 tuples
D has 100 tuples

E: 10000 D: 100 E: 10000

Plan 1: Group by after join Plan 2: Group by before join

Partial group by can also reduce cost

« Example: first aggregate total sales for all products, later aggregate sales for each division
« More on this topic in the group discussion

19



Search Space — Multi-Block Query

Merging nested subqueries

SELECT Emp.Name

FROM Emp

WHERE Emp.Dept# IN
SELECT Dept.Dept# FROM Dept
WHERE Dept.Loc=‘Denver’
AND Emp.Emp# = Dept.Mgr

Nested query (correlated)

SELECT E.Name
FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#

AND D,Lo¢ = ‘Denver’ AND E.Emp# = D.Mgr

Unnested query

20



Search Space — Multi-Block Query

Merging nested subqueries
* Requires outerjoins when aggregation is present
* Nice body of work on doing this in an algebraic framework

SELECT Emp.Name

FROM Emp
WHERE Emp.Dept# IN SELECT E,Name
SELECT Dept.Dept# FROM Dept FROM Emp E, Dept D
WHERE Dept.Loc=‘Denver’ WHERE E.Dept# = D.Dept#
AND Emp.Emp# = Dept.Mgr AND D,Lo¢ = ‘'‘Denver’ AND E.Emp# = D.Mgr
Nested query (correlated) Unnested query

21



Search Space — Multi-Block Query

Merging nested subqueries
* Requires outerjoins when aggregation is present
* Nice body of work on doing this in an algebraic framework

Semijoin-like techniques for multi-block queries
« Send projected list from A to B to reduce the cost of evaluating B
« More on semi-joins in distributed databases in later lectures

CREATE VIEW DepAvgSal As (

SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E

GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V

WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k

AND E.sal > V.avgsal

22



Cost Estimation

System R: Cardinalities

Many commercial systems: histograms

count

N

—

« Good only for single column: 2D histogram

0

106

20

30

40

50

60

equi-width histogram

70

80

90

>

» More buckets lead to higher accuracy but more memory/storage consumption

0

106

20

30

40

50

60

equi-depth histogram

70

80

99 106

S~
—



Cost Estimation

System R: Cardinalities

Many commercial systems: histograms
» More buckets lead to higher accuracy but more memory/storage consumption

« Good only for single column: 2D histogram

Statistics collected through data sampling => error prone

« Statistic errors propagate quickly. Can be disastrous

Cost computation
« Many system parameters: hardware properties, data distribution, buffer utilization, data storage

layout, etc.

24



Enumeration

Extensible optimizers (Example: Starburst and Volcano)

» Add new join algorithms, new operators, new cost models

Volcano (powering SQL server)

« Universal application of rules
« Transformation rules: map one algebraic expression to another
« Implementation rules: map algebraic expression to operator trees

« Top-down dynamic programming technique

25



Other Considerations

Distributed databases
« Communication cost

User defined function (UDF)
 Hard to estimate the cost of a UDF

Materialized views
 Reuse materialized views across queries
« General problem undecidable

Miscellaneous
» Mid-flight query re-optimization
« Resources to consider (e.g., memory, power, cost)
« Fuzzy queries in text/multimedia databases

26



Q/A — Query Optimization-2

Why unnest a query?

Modern query optimization?
» Distributed/parallel, cloud, heterogeneous hardware

Why linear joins more common than bushy joins?

Given a query optimizer, does it matter how a query is written?
What is a star schema?

How does statistical information propagate?

27



Group Discussion

SELECT JOB.title, count(*) IEMPI = 10000 tuples
\IijHOEI\AE jgg,_%MPéaEFjg IDEPTI = 100 tuples

Jid = Jl IJOBlI =10 tupl
AND EMP.did = DEPT.did JO 0 tuples
AND DEPT.location="Madison”

GROUP BY JOB:.title

Consider only nested loop join and only the cost in terms of the # comparisons
In the join (note that which relation is inner vs. outer in a join does not matter in
this case)

Q1: If only one department is in Madison, what’s the cheapest plan?
(hint: group-by can be partially pushed down)
Q2 [optional]: If all departments are in Madison, what’s the cheapest plan?

28



Before Next Lecture

Submit discussion summary to htips://wisc-cs764-f20.hotcrp.com
* Title: Lecture 5 discussion. group ##
« Authors: Names of students who joined the discussion
« Summary submission Deadline: Tuesday 11:59pm

Before next lecture, submit review for

 Jim Gray, et al., Granularity of Locks and Degrees of Consistency in a
Shared Data Base. Modelling in Data Base Management Systems 1976.

29


https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/Granularity-of-Locks.pdf

