WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 6: Granularity of Locks

Xiangyao Yu
9/23/2020

Discussion Highlights

SELECT JOB.title, count(*) IEMPI = 10000 tuples

FROM JOB, EMP, DEPT IDEPTI = 100 tuples

WHERE JOB.jid = EMP,jid IJOBI =10 tuples

ﬁm B [E)I\E/IFF:_? |I SCZI%E]Z;I_N? ;.dd iSOﬂ” * assuming one-on-one mapping between jid and title

GROUP BY JOB:.title

Consider only nested loop join and only the cost in terms of the # comparisons
In the join (note that which relation is inner vs. outer in a join does not matter in
this case)

Q1: If only one department is in Madison, what’s the cheapest plan?
(hint: group-by can be partially pushed down)
Q2 [optional]: If all departments are in Madison, what’s the cheapest plan?

Discussion Highlights — One Dept. in Madison

SELECT JOB.title, count(*) IEMPI = 10000 tuples
\IjVRHOEI\IgE jgg,_%MPéaEFjg IDEPTI = 100 tuples
JIG = JId IJOBI =10 tuples
AND EMP.did = DEP:‘I_'dId i . * assuming one-on-one mapping between jid and title
AND DEPT.location="Madison
GROUP BY JOB:.title
pq [10x10] Group bil title
. bl(')'d / \JOBlo [1000x1] X
roup by ji
/ \ .
D4 [1000x1] [1000x10] pq DEPT
1000 / \ 1 1000 / \ 10
Group by EMP.jid and EMP.did DEPT Group by EMP.jid and EMP.did JOB
| |
EMP EMP

Discussion Highlights — All Dept. in Madison

SELECT JOB.title, count(*) IEMPI = 10000 tuples
\IjVRHOEI\IgE jgg,_%MPéaEFjg IDEPTI = 100 tuples
JIG = JId IJOBI =10 tuples
AND EMP.did = DEP:‘I-'dId i . * assuming one-on-one mapping between jid and title
AND DEPT.location="Madison
GROUP BY JOB:.title
pq [10x10] Group bil title
. I01(_)_OI / \JOBIO [1000x100] 4
roup by ji
//// \\\\ 100
>4 [1000x100] [1000x10] pq DEPT
1000 / \ 100 1000 / \ 10
Group by EMP.jid and EMP.did DEPT Group by EMP.jid and EMP.did JOB

EMP EMP

Today’s Paper: Granularity of Locks

?

94 Relational Implementation Techniques

Granularity of Locks and Degrees of Consistency
in a Shared Data Base

J.N. Gray
R.A. Llorie
G.R. Putzolu
I.L. Traiger

—_—

IBM Research Laboratory
San Jose, Califormnia

first part of the paper the problem of choosing
the granularity (size) of lockable objects is introduced and the
related tradeoff between concurrency and overhead is discussed. A
locking protocol which allows simultaneous locking at various
granularities by different transactions is pressnted. It is based
on the introduction of additional lock nmodes besides the
conventional share mode and exclusive mode. A proof is given of
the equivalence of this protocol to a conventional one.

ABSTRACT: In the

In the s=2cond part of the paper the issue of consistency in a
shared environment is analyzed. This discussion is motivated by
the realization that some existing data base systems use automatic
lock protocols which insure protection only from certain types of
inconsistencies (for instance those arising from transaction
' backup), thereby automatically providing a limited degree of
| consistency. Four degqrees of consistency are introduced. They
I can be roughly characterized as follows: degree 0 protects others
! from your updates, degree 1 additionally provides protection from
losing updates, degree 2 additionally provides protection froa
reading incorrect data items, and degree 3 additionally provides
protection from reading incorrect relationships among data iteas
(i.e. total protection). A discussion follovs on the
relationships of the four degrees to locking protocols,
concurrency, overhead, recovery and transaction structure.
Lastly, these ideas are related to existing data management.
systeas.

Modelling in Data Base Management Systems 1976

Agenda

Transaction basics
Locking

Degree of consistency

ACID Properties in Transactions

Atomicity: Either all operations occur, or nothing occurs (all or nothing)
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave

Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and |

Locking Granularity

Locks are a critical part of concurrency control

Choosing a locking granularity
 Entire database
* Relation
* Records ...

Locking Granularity

Locks are a critical part of concurrency control

Choosing a locking granularity

 Entire database
 Relation
 Records ...

Vv

Increasing concurrency
Increasing overhead when many records are accessed

Goal: high concurrency and low cost

Locking Granularity

Locks are a critical part of concurrency control

Choosing a locking granularity

 Entire database
 Relation
 Records ...

Vv

Increasing concurrency
Increasing overhead when many records are accessed

Goal: high concurrency and low cost

Solution: Hierarchical locks

10

Hierarchical Locks

DB DB AREAS
| |
|
Areas Areas ‘ I -
I / \ |: IND?CE
Files Files Indices i i:«‘;?;‘v‘;é‘g”
| \ —
Records Records RECTRDS I:
T
UN-INDEXED INDEXED
FIELDS FIELDS

Lock a high-level node if a large number of records are accessed
 All descendants are implicitly locked in the same mode

11

Hierarchical Locks

DB DB '|
I I :
Areas Areas ‘ 3 .
| / \ I: INDECES
Files Files Indices : i:f??;‘v‘;é’g”
| \ —
Records Records .| {
Y
UN-INDEXED INDEXED
FIELDS FIELDS

Lock a high-level node if a large number of records are accessed

 All descendants are implicitly locked in the same mode
* Intention lock to avoid conflict with implicit locks

12

Locking Modes

Basic locking modes
« S: Shared lock
o X: Exclusive lock

13

Locking Modes

Basic locking modes
« S: Shared lock
o X: Exclusive lock

Intention modes:
* |S: Intention to share
* |X: Intention to acquire X lock below the lock hierarchy
« SIX: Read large portions and update a few parts

14

Locking Modes

Basic locking modes
« S: Shared lock
o X: Exclusive lock

Intention modes:
* |S: Intention to share
* |X: Intention to acquire X lock below the lock hierarchy
« SIX: Read large portions and update a few parts

Example: read record (T1)

DB IS

I
Areas IS

I
Files IS
Reclords S

15

Locking Modes

Basic locking modes
« S: Shared lock
o X: Exclusive lock

Intention modes:
* |S: Intention to share
* |X: Intention to acquire X lock below the lock hierarchy
« SIX: Read large portions and update a few parts

Example: read record (T1) update record (T2)

DB IS IX

I
Areas IS IX

I
Files IS IX
Reclords S X

16

Locking Modes

Basic locking modes
« S: Shared lock
o X: Exclusive lock

Intention modes:
* |S: Intention to share
* |X: Intention to acquire X lock below the lock hierarchy
« SIX: Read large portions and update a few parts

Example: read record (T1) update record (T2) scan + occasional updates (T3)

DB IS IX IX

Aréas IS IX IX

Filles IS IX SIX
Reclords S X lock specific records in X mode

17

Lock Compatibility

Increasing lock strength —>

1S IX S SIX | X
1S Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

18

Lock Compatibility

Increasing lock strength —>

S [IX |S SIX |X
IS |Y Y Y N
IX |Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

19

Lock Compatibility

Increasing lock strength —>

IS [IX SIX | X
s v |y Y |N
X |y |y N [N
s v DY N |N
SIX |Y |N N [N
X |N [N N [N

Most privileged

least privileged

20

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

21

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

 Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

22

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

 Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

 Locks requested root to leaf

 Locks released leaf to root or any order at the end of the
transaction

23

Summary of Lock Granularity

Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) | None SorlS IX or IS, at least one
parent

IX (Intention None X, SIX, IX, IS SIX or IX, all parents

exclusive)

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and |S on all desc X, SIX, IX SIX or IX, all parents

intention exclusive)

X (Exclusive) X o all desc - SIX or IX, all parents

24

Summary of Lock Granularity

Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) | None SorlS IX or IS, at least one
parent

IX (Intention None X, SIX, IX, IS SIX or IX, all parents

exclusive)

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and |S on all desc X, SIX, IX SIX or IX, all parents

intention exclusive)

X (Exclusive) X o all desc - SIX or IX, all parents

25

Summary of Lock Granularity

Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) | None SorlS IX or IS, at least one
parent

IX (Intention None X, SIX, IX, IS SIX or IX, all parents

exclusive)

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and |S on all desc X, SIX, IX SIX or IX, all parents

intention exclusive)

X (Exclusive) X o all desc - SIX or IX, all parents

26

Summary of Lock Granularity

Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) | None SorlS IX or IS, at least one
parent

IX (Intention None X, SIX, IX, IS SIX or IX, all parents

exclusive)

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and |S on all desc X, SIX, IX SIX or IX, all parents

intention exclusive)

X (Exclusive) X o all desc - SIX or IX, all parents

27

Dynamic Lock Graphs

The lock graph can be dynamic (e.g., indices created, records
inserted)

Must deal with Phantoms

28

Phantom Effect

Sailors

Age

Rating

80

75

90

NI DN —

85

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

29

Phantom Effect

Sailors

Age

Rating

80

75

90

NI DN —

85

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1

30

Phantom Effect

Sailors

Age

Rating

80

75

90

85

99

- (NI —

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)

31

Phantom Effect

Sailors

Age Rating
80 1

75 1

90 2

85 2

99 1

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1
‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

32

Phantom Effect

Sailors

Age

Rating

80

1

75

1

85

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

33

Phantom Effect

Sailors

Age Rating
80 1

75 1

85 2

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

1 locks oldest sailor in rating 2

34

Phantom Effect

Sailors

Age

Rating

80

1

75

1

85

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

1 locks oldest sailor in rating 2

T1 commits. Output: (80,1), (85, 2)

35

Phantom Effect

Sailors

Age Rating

80 1

75 1

85 2

99 1
Phantom

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

Output: (80,1), (85, 2)

Different from all sequential execution output
« T1 -> T2. Output: (80, 1), (90, 2)
« T2 -> T1. Output: (99, 1), (85, 2)

36

Solution to Phantoms

Observation: Inserts and deletes are writes to the index; lookups are
reads to the index

Can lock the index in X or S mode

Optimization: lock intervals and predicate locking

» E.g., lock age=80 and the interval of age > 80 (prevent age 99 from
inserted)

37

Degree of Consistency (Isolation)

How can transactions interleave?

One extreme: concurrent execution produces the same results as
some serial execution (serializability)

 Limited concurrency and performance

* Intuitive and easy to reason about

Another extreme: transaction operations can arbitrarily interleave

38

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

39

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

40

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

41

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

42

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

43

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

44

Degree of Consistency (Isolation)

Locks | Non- Dirty | Non-repeatable | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads | level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Degree 2 | Long-X Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes None

45

Degree of Consistency (Isolation)

Locks Non- Dirty | Non-repeatable | Phantom | SQL Isolation Dependenc
Recoverable | Reads | or fuzzy Reads level y
Degree 3 | Long-X Serializable W->W
Long-R W->R
R->W
Yes Repeatable reads
Degree 2 | Long-X Yes Yes Read committed | W->W
Short-R W->R
Degree 1 | Long-X Yes Yes Yes Read W->W
uncommitted
Degree 0 | Short-X | Yes Yes Yes Yes None

46

Two-Phase Locking

A transaction is two phase if it does not lock an entity after unlocking
some entity

« Growing phase: acquiring locks

« Shrinking phase: releasing locks

Two-phase locking (2PL) guarantees serializability

47

Two-Phase Locking

A transaction is two phase if it does not lock an entity after unlocking
some entity

« Growing phase: acquiring locks

« Shrinking phase: releasing locks

Two-phase locking (2PL) guarantees serializability

Strict 2PL: 2PL + all exclusive locks released after transaction
commits
« Strict 2PL guarantees ACA (Avoiding Cascading Aborts)

48

Q/A — Granularity of Locks

Multi-granularity locks used in modern database?

Research papers focus on tuple-level locking?

SQL vs. NoSQL regarding locking?

How is the action of placing a lock itself thread-safe?
Implementation of Internal locking? (checkout next-key locking)

49

Before Next Lecture

Submit review for

* H. T. Kung, John T. Robinson, On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst. 1981.

50

http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/occ.pdf

