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CS 764: Topics in Database Management Systems
Lecture 9: B-tree Locking
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Today’s Paper: B-tree Locking
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Agenda
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Index in OLTP database
B tree, B+ tree, and B* tree
Blink-tree



Index in an OLTP Database
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B-tree
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Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

Balanced tree data structure 
• Data is sorted
• Supports: search, sequential scan, insets, and deletes



B-tree
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Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

Balanced tree data structure 
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes

Properties 
• Every node has at most m children.
• Every non-leaf node (except root) has at least ⌈m/2⌉ child nodes.
• All the leaf nodes of the B-tree must be at the same level.



B-tree vs. B+ Tree vs. B* Tree
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B-tree: data pointers stored in all nodes
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B-tree vs. B+ Tree vs. B* Tree
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B-tree: data pointers stored in all nodes
B+ tree: 

• Data pointers stored only in leaf nodes
• The leaf nodes are linked
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B-tree vs. B+ Tree vs. B* Tree
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B-tree: data pointers stored in all nodes
B+ tree: 

• Data pointers stored only in leaf nodes
• The leaf nodes are linked

B* tree is a misused term in B-tree literature
• Typically means a variant of B+ tree in which each node is least 2/3 full
• In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

10

8 14 16

4 9 13 15 17 19

B* tree

9 19

19
high key



B* Tree Structure
Within each node, keys in ascending order

Each node contains at least k keys and at 
most 2k keys (k is a tree parameter)

Values stored in a subtree are bounded by 
the the two key values 

Ki-1 < v ≤ Ki

Example: search key 53
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B* Tree Insertion
Insert to leaf if the leaf node has fewer than 
2k entries

If leaf has 2k entries, split the node into two 
nodes (split may happen recursively)
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Challenge of Concurrent Operations
Concurrent search and insert operations 
may cause problems
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Blink-Tree
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Adds a link field that points to the next node at the same level of the tree as 
the current node

The link pointer of the rightmost node on a level is a null pointer
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link pointer
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Blink-Tree: Search Algorithm

Example: search Key=13
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Blink-Tree: Search Algorithm

Example: search Key=13
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Blink-Tree: Insert Algorithm
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Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2 Step 3



Blink-Tree: Insert Algorithm
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5     10     23

……

root … …

11   13   17   23

… … ……

Example: 
Insert 14

F



Blink-Tree: Insert Algorithm
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Blink-Tree: Insert Algorithm
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initially, w is the data page to be inserted 



Blink-Tree: Insert Algorithm
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Blink-Tree: Insert Algorithm
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Blink-Tree: Insert Algorithm
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Example: 
Insert 14
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Blink-Tree: Insert Algorithm
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Insert 14
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F

update the two disk pages (page B first)



Blink-Tree: Insert Algorithm
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Example: 
Insert 14

F

update the two disk pages (page B first)



Blink-Tree: Insert Algorithm
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5     10     23

11   13   14

……

root … …

F

A 17   23   
B

Example: 
Insert 14

try to insert (key=14, ptr=B) to F



Blink-Tree: Insert Algorithm
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Example: 
Insert 14

insert (key=14, ptr=B) to F



Blink-Tree: Insert Algorithm
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Example: 
Insert 14

At most three locks are being during an insert
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Blink-Tree: Insert Algorithm
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root … … Example: 
Insert 14

At most three locks are being during an insert
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Blink-Tree: Insert Algorithm
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root … … Example: 
Insert 14

At most three locks are being during an insert

5     7       9     10  

12   13   14

……

F

A 17   23   
B

11    14 23  



Revisit Concurrent Operations

key=15 is less than max key in node y

Follow the link ptr to the next leaf node and 
15 is found!
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Other Issues 
Delete: allow fewer than k entries in a leaf node
• Observations: insertions are much more frequent than deletions

Deadlock freedom: locks are acquired bottom-up and left to 
right => total order

Livelock: keep following the link pointer due to node splits
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Q/A – B-tree Locking
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B+ tree vs. B* tree?
Which variant of B-tree are modern DBMSs using?
Would a left pointer add benefit? 
Experimental comparison
What’s the typical value of k?
Binary search within a node?
Disk utilization w.r.t. deletion
Deadlock vs. livelock?



Before Next Lecture
Submit review before next lecture
• C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM 
Trans. Database Syst. 1992.
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http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/aries.pdf

