
1 Copyright © 2022, Oracle and/or its affiliates

Dream the Stream
High Velocity Event Processing with a
Converged Database

Shasank Chavan

Vice President, In-Memory Data Technologies

University of Wisconsin, Madison

October 24, 2022

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion
of Oracle Corporation.

Safe harbor statement

Copyright © 2022, Oracle and/or its affiliates2

What is Event Stream Processing

Converged vs. Specialized Databases

What does an Event Stream Processing Database Need

Demo Slides – DevOps Monitoring

Copyright © 2022, Oracle and/or its affiliates

Agenda

3

Copyright © 2022, Oracle and/or its affiliates

What is Event
Stream Processing

4

What is Event Stream Processing?

Copyright © 2022, Oracle and/or its affiliates

Da
ta

ba
se

 U
se

 C
as

e
Ch

ar
ac

te
riz

ed
 B

y

Continuous ingest of high
frequency event data

Continuous Ingestion

Unlike batch processing,
event processing analytics
is performed on data in
motion

Real-time Analytics

Event data is increasingly
compressed and
summarized as it ages
before finally comes to rest
as archived data

Data Reorganization

ARCHIVED
EVENTS

OLDER
EVENTS

IN
CO

M
IN

G
EV

EN
TS RECENT

EVENTS

• Events are discrete data records generated by large farms of data sources

• Data sources are extremely diverse
• Devices, sensors, meters, servers, desktops, smartphones

• An event typically includes the following information:

What is Event Data?

Time: 6/17/21:1:0pm
Vehicle ID: WBG6108
Reading: {

Location: 37.6N/112.2W
Speed: 66.7 mph
Direction: 120.5 degrees

}

Time: 6/11/21:12:12pm
Phone ID: 1955ABC
Reading: {

Location: 37.6N/112.2W
Battery Level: 60%

}

Time: 6/16/21:12:05pm
Meter ID: X45-123
Reading: {

Electricity KW-hrs: 0.4
Water Gallons: 5
Gas therms: 2

}

Copyright © 2022, Oracle and/or its affiliates6

High Arrival Rate
• Most event processing

systems receive large
numbers of events from
many different sources
• E.g. Billing systems receives

millions of smart meter
readings every few minutes.

High Obsolescence Rate
• Recent events are frequently

queried for real time analytics
while old events are used for
historical reporting

• Events are often compressed
and summarized at greater and
greater levels of data and space
reduction as they age

• E.g. Per minute readings from smart
meters converted to hourly
summaries after a day and converted
to daily summaries after a month

Properties of Event Data

Copyright © 2022, Oracle and/or its affiliates

ARCHIVED
EVENTS

RECENT
EVENTS

OLDER
EVENTS

INCOMING
EVENTS

Reporting

REAL-TIME
ANALYTICS

7

Rich Analytic Query Capability
Requires advanced analytic functionality to filter, aggregate and summarize
across moving windows of event stream data

High Speed Ingest
Must be able to sustain billions of events per day

Real-Time Analytics
Instantaneous reporting of timely actions on events
For example, detecting and reporting fraud, fire, leaks, etc.

Automatic Data Lifecycle Management
Automatic data compression, summarization, archiving needed to avoid
unbounded data growth

Flexible data model
Needs to handle heterogeneous event sources
For example, a new device type added to home network

A

B

C

D

E

Requirements of an
Event Stream

Processing System

Copyright © 2022, Oracle and/or its affiliates
8

Copyright © 2022, Oracle and/or its affiliates

Converged vs. Specialized DBs

9

The Increasing Complexity of Modern Apps

• Modern Apps use a new generation of data technologies:

• Developing and running modern apps across these many engines become increasingly
complicated – bugs, security, upgrades, downtimes, etc.

Copyright © 2022, Oracle and/or its affiliates

TextDocuments

{ JSON }

Graph

New Types of Data

Spatial

New Workload Types

Geo-
Distributed

Micro
Services

BlockchainIoT

New Data TypesNew Types of Analytics

Social
Graph

Lake HouseLocationMachine
Learning

The Increasing Complexity of Modern Apps

• One approach to building modern apps is to use a specialized database for each application
need

• Each specialized database excels at one aspect of the app’s requirements

Copyright © 2022, Oracle and/or its affiliates

TextDocuments

{ JSON }

Graph

New Types of Data

Spatial

New Workload Types

Geo-
Distributed

Micro
Services

BlockchainIoT

New Data TypesNew Types of Analytics

Social
Graph

Lake HouseLocationMachine
Learning

Elastic
Search

MongoDB
Documents

Neo4j
Graph

Spatial Social
Graph

Snowflake
Lake House

LocationMachine
Learning

Geo-
Distributed

Micro
Services

AWS QLDB
Blockchain

DynamoDB
IoT

The Problems With Using Specialized Databases

• However, this approach inherently creates an application architecture that is heterogeneous and distributed
• Built from many moving parts that must be learned, synchronized, secured, maintained, and governed

• Fragments the data and app, which makes app dev more complex, and compromises security and QoS

• Specialized databases also provide limited ACID consistency requiring developers to code app level consistency

• Building apps using specialized databases forces developers to spend their time integrating instead of
innovating

Copyright © 2022, Oracle and/or its affiliates

Elastic
Search

MongoDB
Documents

Neo4j
Graph

New Types of Data

Spatial

New Workload Types

Geo-
Distributed

Micro
Services

AWS QLDB
Blockchain

DynamoDB
IoT

New Data TypesNew Types of Analytics

Social
Graph

Snowflake
Lake House

LocationMachine
Learning

Copyright © 2022, Oracle and/or its affiliates13

Event Stream Processing Solutions

Copyright © 2022, Oracle and/or its affiliates14

• Oracle is a Converged Database
• Native support for all modern data types and

the latest development paradigms built into
one product

• New data management
technologies are often
implemented as separate products
• With a converged database, you don’t need to

manage and maintain multiple systems
• No need to worry about having to provide

unified security across them.

• A good analogy is a smartphone
• In the past, separate phone, camera, video

recorder, gps, music device

Oracle Converged Database

Copyright © 2022, Oracle and/or its affiliates

What Does an Event Stream
Processing Database Need

15

Flexible Data
Model

Copyright © 2022, Oracle and/or its affiliates16

• Event Stream data is highly dynamic

• Formats can change constantly: between
readings; after software update, after new
type of device is added

• JSON allows applications to easily adapt
to changes in data formats. e.g.:

• The fixed part of this meter evet data
(Meter ID, timestamp) could be stored
in relational columns while the variable
Readings data could be stored as
JSON

Why is JSON Necessary for Event Stream Processing

{
"Time": "6/16/21:12:05:12"
"HomeID": "BZ125"
"Readings:" {

"KWH":"0.4"
}

}

Seq# MeterID Time Readings

1005 BZ125 61621:1205:00 {“KWH”:”0.8”}

1006 BZ78 61621:1210:04 (“Gas Therms”:”1”}

1007 BZ123 61621 1215:12 {“Gallons”:”51”}

Copyright © 2021, Oracle and/or its affiliates, All Rights Reserved.
Copyright © 2022, Oracle and/or its affiliates17

Oracle REST Data Services

• REST is the ideal protocol for Event Stream Processing Ingest from lightweight clients

• Oracle Rest Data Services automatically generates REST endpoints for SQL statements

• Transforms SQL results into JSON or other formats (CSV, etc.)

• REST is stateless, all INSERTs/UPDATEs/DELETEs are auto-committed

• Applications access data like any other service via a REST API

• Simplifies and standardizes APIs to access data

URI Map & Bind SQL

SQL Result SetTransform to JSONJSON

Lightweight
Clients Oracle DatabaseREST Data Services

Copyright © 2021, Oracle and/or its affiliates, All Rights Reserved.
Copyright © 2022, Oracle and/or its affiliates18

High-Speed
Ingestion

Copyright © 2022, Oracle and/or its affiliates19

• A memory optimised mechanism
for inserting data into the
database
• Ideal for ingesting light weight

events
• Event rows are buffered in

memory and asynchronously
drained to disk
• An API allows developers to check

on the durability of their inserts
• Ultra-fast - 25 million inserts per

second or 21 trillion per day on two
socket server

Memoptimized Rowstore | Fast Ingest at the DB Tier

Copyright © 2022, Oracle and/or its affiliates

SGA
BUFFER CACHE

LARGE POOL SHARED POOL

Batched Rows

Batched Rows

Batched Rows

DRAINER PROCESSES
BACKGROUND BLUK
LOAD OF DATA TO
STORAGE

WRITE VERIFICATION API

APPLICATION
SERVER

HIGH VOLUME
INSERTS

EVENTS : SENSORS,
TELEMETRY,
LOCATION ETC.

21

Real Application Clusters: Industry-Leading Scale-Out Compute

•Transparently scales out a database across a pool of hosts
sharing the same storage pool
–Only scale-out technology capable of running the world’s most complex
enterprise workloads

•Scales performance: more hosts imply more throughput
–When more throughput is required, simply add a new host
•Scales fault tolerance: more hosts imply more availability
–When a host goes down, the database remains available
•Scales user experience: Constant latency as system grows
•Scales administration: Larger clusters no harder to manage than smaller
clusters, online upgrades and patching

RAC Instance 1 RAC Instance 2

Consolidated pool of storage

Copyright © 2022, Oracle and/or its affiliates

Partitioning: Efficiency and Parallelism for Event Streams

22

•Partitioning avoids single table insert scaling limitations
(E.g. Contention for space allocation)
•Divides large tables into multiple units for scalable ingest
–Many different partitioning schemes exist for partitioning and
for sub-partitioning
–Event stream data typically partitioned by time interval and
sub-partitioned by hash of source ID

•Very important scalability mechanism for event streams:
–Sub-partitioning by source speeds up ingest
–Partitioning by time reduces data access for analytics

6PM – Now

12PM– 6PM

6AM – 12PM

12AM – 6PM

Interval
Partitions

Subpartitions
by hash(sensorID)

Copyright © 2022, Oracle and/or its affiliates

23

One giant database divided into
several smaller databases (shards)

METERS -1

METERS-2

METERS-3

•Global-Scale applications may prefer to divide massive
databases into a farm of smaller databases known as shards
–Avoids scalability or availability issues with very large databases
–Each shard can be replicated via Data Guard or Golden Gate

•Native SQL for sharding tables across up to 1000 Shards
-Routing of SQL based on shard key, and cross shard queries
-Online addition and reorganization of shards

• Sharding is the Ultimate scalability mechanism
-Linear scalability of capacity, throughput, user population
- Improves availability since shards are fault isolated
-Scales user experience since shards are performance isolated
-Scales administration since built-in shard management tools make

managing of 100s of shards as simple as managing a single database

Sharding: Globally Distributed Database Architecture

METERS

Copyright © 2022, Oracle and/or its affiliates

Real-Time
Analytics

Copyright © 2022, Oracle and/or its affiliates24

• Single copy of data, Two in-memory formats

• Both row and column format for the same
table
• Simultaneously active and consistent

• OLTP uses existing row format

• Analytics uses In-Memory column format

• Database In-Memory is seamlessly built into
the Oracle Database – not a separate engine

• All enterprise features work : RAC, Dataguard,
Flashback, etc.

Copyright © 2022, Oracle and/or its affiliates

Database In-Memory | Real-Time Analytics with Fast OLTP

Memory Memory

SALES SALES
Row

Format
Column
Format

SALES

25

• Pure In-Memory column format
• In-Memory maintenance: Fast OLTP

• No changes to disk format

• All features (security, availability) work
transparently

• Does not require whole database to
be in-memory
• Can be enabled for hot data, at

tablespace, table, partition, level

Copyright © 2022, Oracle and/or its affiliates

Database In-Memory | Columnar Format

SALES

SALES

26

SIMD Vector Processing

Process multiple column
values in a single CPU
instruction

Ve
ct

or
 R

eg
ist

er

Load
multiple
region
values

Vector
Compare
all values
an 1 cycle

CPU
CA

CA
CA

CA

Compression

Scan & filter data
in compressed

format optimized
for space and time

Storage Indexes

Prune out any
unnecessary data from

the column

Database In-Memory | Technology

Access only the
columns you need

Columnar Format

Copyright © 2022, Oracle and/or its affiliates27

Copyright © 2022, Oracle and/or its affiliates

Database In-Memory | Improves All Aspects of Analytics

• Billions of Rows per
second scans using SIMD
Vectorization

Scans Reporting

•Run reports with aggregations
and joins 10x faster using
novel memory-optimized
algorithms

Joins

•Convert slower joins into
10x faster filtered column
scans levering In-Memory
Columnar Data formats

HASH JOIN

ITEMS SALES

28

• Inserting one row into a table requires
updating 10-20 analytic indexes: Slow!

• Fast analytics only on indexed columns

• Analytic indexes increase database size

Database In-Memory | Accelerate Mixed Workloads

• Column Store not persistent so updates
are: Fast!

• Fast analytics on any columns

• No analytic indexes: Reduces database
size

Table

1 – 3
OLTP

Indexes

10 – 20
Analytic
Indexes

REPLACE

Copyright © 2022, Oracle and/or its affiliates

Table

1 – 3
OLTP

Indexes In-Memory
Column Store

29

• Dual-Format Architecture enables fast Mixed
Workloads and faster Analytics

• Fast In-Memory DML because invalid row is logically
removed from column store (just set a bit)

• Analytic query will ignore invalid rows in column store,
and just vector process valid rows.

• Invalid rows are then processed.

• Mixed workload performance can suffer if the number
of invalid rows accumulates in IMCUs
• Additional techniques to refresh a dirty IMCU in the background

Copyright © 2022, Oracle and/or its affiliates

Mixed Workloads

Memory Memory

SALES SALES
Row

Format
Column
Format

SALES

X .… X X

30

• Hot expressions can be stored as
additional columns in memory

• All In-Memory optimizations apply to
expression columns (e.g. Vector
processing, storage indexes)

• Two modes:
• Manual: Declare virtual columns for desired

inmemory expressions

• Auto: Auto detect frequent expressions

• 3-5x faster complex queries

Copyright © 2022, Oracle and/or its affiliates

In-Memory Expressions

Net = Price + Price * Tax
Example: Compute total sales price

Pric
e

Tax Pric
e + Pric

e *Tax

CREATE TABLE SALES (
PRICE NUMBER, TAX NUMBER, …,
NET AS (PRICE + PRICE * TAX)
)

INMEMORY;

32

• Consider a query to find the Total sales amount for every
month in 2022

select extract(month from order_date) MONTH,
sum(order_amount) TOTAL_SALES
from SALES
where extract(year from order_date) = 2022
group by extract(month from order_date);

• In-Memory can now run such queries by up-to 6X faster
by leveraging the In-Memory Expressions framework

• Each extracted component (e.g. MONTH) for a DATE column
adds only a 1B per-row in-memory overhead

• User can specify which DATE column component should be
stored in-memory through a parameter

Copyright © 2022, Oracle and/or its affiliates

Database In-Memory | Accelerating DATE Queries

SALES

order_date

extract
(month from
order_date)

extract
(year from

order_date)

33

If we know ahead of time what tables will be joined, we can make the join fast
• Create inmemory join group JG (Lineitem(l_orderkey), Orders(o_orderkey))

Hash Join is now changed into simple Array Lookup of codes:

Copyright © 2022, Oracle and/or its affiliates

In-Memory Vectorized Joins

Lineitem
(l_orderkey)
151252

358159

695825

…

915238

Orders
(o_orderkey)
105125

…

…

…

915238

Global Dictionary
(L_orderkey and O_orderkey)

105125 1

151252 2

…

695825 1523

915238 2698

0 2698

2698

0

34

In-Memory Analytics on Spatial, Text, and JSON

Copyright © 2022, Oracle and/or its affiliates

Converged Workloads

In-Memory (IM)
Table Columns

Spatial
Column

Spatial
Summary

2. Store Optimized Text Index
structure in Column Store
for fast searches

In-Memory (IM)
Table Columns

Text
IndexResume

(Text) Words

..
database

..
…

3. Store JSON in optimized
binary representation in
Column Store

{
"Theater":"AMC 15",
"Movie":”Rogue One",
"Time“:2017-01-09 18:45",
"Tickets":{

"Adults":2
}

}

00101001…

1. Store Spatial Summaries
in Column Store for
Faster Filtering

35

• JSON documents stored in Database In-Memory (and in Cell Memory on Storage Nodes
with Exadata) automatically get shredded into columns for faster key/value access:

Copyright © 2022, Oracle and/or its affiliates

In-Memory Columnar JSON

jdoc

{
"firstName": ”Clara",
"gender": ”female",
“age” : 53,
"address": {"city": ”Dallas", "state": ”TX"},

}

{
"firstName": ”Alan",
"gender": ”male",
“age” : 24,
"address": {"city": ”New York", "state": ”NY"},

}

{
"firstName": ”John",
"gender": ”male",
“age” : 34,
"address": {"city": ”Redwood City", "state": "CA"},

}

Path/Value Columns

Alan
Clara
John

Male
Female
Male

New York
Dallas
Redwood City

name gender address.city address.state

NY
TX
CA

doc id

2
3
1

SELECT count(*) FROM employee WHERE json_exists
(jdoc, '$.person?(@.age < 34 && @.name = 'John’ &&
@.address.city = ‘Redwood City’)’)

15X Faster Performance

36

Rich Analytics Query
Functionality

Copyright © 2022, Oracle and/or its affiliates37

Copyright © 2022, Oracle and/or its affiliates38

• Oracle Database has the industry-leading portfolio
of analytic functions for event steam processing:
• Row Level functions: These are standard SQL functions returning

a single value for each row of input (e.g. ROUND, TRUNC, UPPER,
etc.) can be used for interpolation, smoothing, etc.

• Aggregate functions: Return a single value for a group for rows
(e.g. MAX, MIN, AVG, SUM etc.)

• Window functions: Return a single value per row, depending on
the group of rows (as specified by a window clause) that the row
belongs to

• Window functions are especially useful for
analyzing events across different time periods, e.g.
• Max energy consumption within each 1 hour interval
• Ranking of 10 minute energy consumption intervals within each

day
• Greatest change in consumption from prior interval

SQL for Event Stream Processing
Analytic Window Functions Select MAX(Energy)

(OVER PARTITION BY TIME_IN_HRS)
FROM MeterReadings;

Window 3
8pm-9pm

Window 2
7-8pm

Window 1
6-7pm

MeterID Time KWhrs

1XC23 9:00pm 2.0

1XC23 8:45pm 0.86

1XC23 8:30pm 0.56

1XC23 8:15pm 0.23

1XC23 8:00pm 0.4

1XC23 7:45pm 0.5

1XC23 7:30pm 0.8

1XC23 7:15pm 1.5

1XC23 7:00pm 0.7

1XC23 6:45pm 0.6

1XC23 6:30pm 0.9

1XC23 6:15pm 0.45

1XC23 6:00pm 0.86

1XC23 5:45pm 1.34

1XC23 5:30pm 0.55

1XC23 5:15pm 1.02

Window 0
5-6pm

2

1.5

0.9

1.34

Copyright © 2022, Oracle and/or its affiliates39

• Event Stream data can be further analyzed using the
MATCH_RECOGNIZE construct for SQL pattern
matching

• MATCH_RECOGNIZE returns rows from a result set
that match a specified pattern within a specified
ordering of the result set

• Many use cases – detecting fraud, alerting on high
usage, finding anomalies in IoT metrics, etc.:
• Find meter readings which correspond to two successive periods of

increased readings (shown here)
• Detect a double-dip for a particular stock
• Detect suspect pattern of credit card charges

• Eliminates the need to write complex SQL with self
joins and nested sub-queries

SQL for Event Stream Processing
Pattern Matching

Select * From MeterReadings
MATCH_RECOGNIZE(
ORDER BY Time
PATTERN(r r)
ONE ROW PER MATCH
DEFINE r as KWHrs > PREV(KWhrs))

MeterID Time KWhrs

1XC23 9:00pm 2.0

1XC23 8:45pm 0.86

1XC23 8:30pm 0.56

1XC23 8:15pm 0.23

1XC23 8:00pm 0.4

1XC23 7:45pm 0.5

1XC23 7:30pm 0.8

1XC23 7:15pm 1.5

1XC23 7:00pm 0.7

1XC23 6:45pm 0.6

1XC23 6:30pm 0.9

1XC23 6:15pm 0.45

1XC23 6:00pm 0.86

1XC23 5:45pm 1.34

1XC23 5:30pm 0.55

1XC23 5:15pm 1.02

MATCH
MATCH

MATCH

Oracle Machine Learning for Event Streams

Copyright © 2022, Oracle and/or its affiliates40
https://oracle.com/machine-learning

• Typical applications of machine learning for event streams include
failure prediction from sensor data, fraud detection in financial
transactions, sentiment analysis from news feeds, spam filters,
detection of correlated failures in event logs

• Oracle Database has a very rich portfolio Machine learning
models for Event Streaming use-cases.

• Oracle Database also supports Auto ML which helps to select the
ideal algorithms for a given data set that work best for provided
data, settling on right data samples for the model, identifying
features in data that provide good signal & minimize noise.

- Inferencing based on the models is easily done in real time without
requiring any further data movement to a different store

Scalable in-database algorithms and open source Python and R integration
Oracle Machine Learning | Summary

Copyright © 2022, Oracle and/or its affiliates41

Integrated APIs
SQL | Python | R | REST

Interfaces
Zeppelin-based collaborative notebooks
AutoML UI – no-code ML modeling
Services – model management and deployment
Use 3rd party IDEs
SQL Developer plug-in Oracle Data Miner

ML techniques
classification | regression | clustering
anomaly detection | time series
feature extraction | attribute importance
ranking | row importance
30+ in-database algorithms

Big Data
Native and Spark MLlib algorithms
Cloud SQL and Big Data SQL

Automation
AutoML API and UI
Algorithm-specific data preparation
Integrated text mining
Partitioned model ensembles

Cloud and on premises
Oracle Database
Oracle Autonomous Database
Oracle Database Cloud Service
Oracle Big Data Service

https://oracle.com/machine-learning

Automatic Data Life-
Cycle Management

Copyright © 2022, Oracle and/or its affiliates42

Event Stream Data Characteristics

• Event streams have high data arrival rates
and a decaying rate of relevance
• It is desirable to organize event data in a way that

reflects this pattern of usage

• An ideally organized event stream should
thus have three optimization zones
• Write Optimized Zone: Organized for fast Ingest

• Read Optimized Zone: Organized for Fast analytics

• Space Optimized Zone: Organized for space savings

• These zones may overlap you may want
high speed analytics on recently ingested
data as well as on cooler longer term data
Copyright © 2022, Oracle and/or its affiliates

43

Insert Events Interval
Partitions

Hottest

Coldest

Write
Optimized

Read
Optimized

Space
Optimized

Hourly Averages

Achieving Read, Write & Space Optimization

• Write optimized partitions should be declared
MEMOPTIMIZED FOR WRITE
§ Recent partitions are typically uncompressed to achieve max

ingest speed

• Read Optimized partitions should be declared
INMEMORY in order to enable real-time
analytics

• Space Optimized partitions should be
compressed or downsampled

• This gradient of Write, Read, and Space
optimization can be achieved with Automatic
Data Optimization and DBMS_SCHEDULER

44

Insert Events Interval
Partitions

Hottest

Coldest

MEMOPTIMIZE
FOR WRITE

INMEMORY

HIGH-LEVEL
COMPRESSION

Hourly Averages

O
rig

in
al

Ev

en
t d

at
a

Do
w

ns
am

pl
ed

Ev
en

t d
at

a

Copyright © 2022, Oracle and/or its affiliates

Copyright © 2022, Oracle and/or its affiliates46

Downsampling Event Streams

5 min
consumption

5 min
consumption

5 min
consumption

5 min
consumption

5 min
consumption

6pm-
12am

12am-
6am

6am-
12pm

12pm –
6pm

6pm
–12am

60 min
consumption

12pm –
12am

12am –
12pm

Meter readings

60 min
consumption

Interval
Partitions

Interval
Partitions

Meter reading
summaries

Insert into MeterSummaries
Select meter_id,
time_in_hrs, sum(KWhrs)
From MeterReadings
Where <more than 24hrs old>
Group by meter_id, time_in_hrs

• To save space and to accelerate reports on
older data, events are often downsampled or
summarized as they age

• This downsampling action can be
performed via the DBMS_SCHEDULER
package
• E.g. A smart metering application may receive meter

readings every five minutes
• A DBMS_SCHEDULER job generates hourly

summaries from intervals more than 24 hours old,
inserts them into a summary table

• Note: The summary table can have a different interval
partitioning scheme

• Can be used to feed other even more granular
summaries (e.g. generate daily summaries after a
month)

Automatic Event
Lifecycle

Management:

Advanced Compression

Automatic Data
Optimization

DBMS_SCHEDULER
Real-Time Analytics:

Database In-Memory

Exadata In-Flash Column Store

Parallel Query

Attribute Clustering

Materialized Views

Streaming Analytics
Functionality:

Analytic Window Functions

Pattern Matching

Native Machine Learning

High Speed Ingest:

TimesTen
Application-Tier Cache

Memoptimized Tables

Partitioning

Real Application Clusters

Sharding

Exadata Persistent Memory
Accelerator

Flexible data model:

Best-of-Breed
Relational, JSON,
Spatial, Text, etc.

Native Rest Services

Many capabilities result in class-leading Event Stream Processing Support
Oracle Database as an Event Stream Processing System

Copyright © 2022, Oracle and/or its affiliates47

Copyright © 2022, Oracle and/or its affiliates

Demo

DevOps Monitoring with
Database In-Memory

48

• DevOps has been adopted by
companies of all sizes for rapid and
continuous delivery of IT applications

• Event stream processing Databases
allow businesses to:

• Rapidly ingest streams of metrics emitted by
DevOps toolchains

• Analyze and predict trends based on recent and
historical data in real-time.

• Create custom dashboards to visualize fleet
health

• Detect anomalous behavior and raise alerts

Copyright © 2022, Oracle and/or its affiliates

DevOps Monitoring

Monitored
Server Fleet

Event Stream
Processing DB

Metrics Queries

Dashboards, Alerts, Anomaly
Detection etc.

49

Copyright © 2021, Oracle and/or its affiliates50

Exporters

Pull Metrics

Alert Manager

Push Alerts

Event Streams POC
Prometheus Ecosystem

Dashboards

PromQL

Prometheus is a popular open-source systems monitoring and alerting
solution.

We thought, “Wouldn’t it be cool to see how easily the Oracle RDBMS can
replace Prometheus’ storage engine to demonstrate it’s Event Stream
Processing capabilities?”

EXAMPLE OF METRIC COLLECTED:
name=node_cpu_seconds_total,
time=2021-09-26 03:49:23,
value=152359281
instance=‘slc15rwe.us.oracle.com:9100,
cpu=1
…

Copyright © 2021, Oracle and/or its affiliates51

Exporters

Alert Manager

Event Streams POC
with Oracle Database Server

PromQL

1. RAC Database 2. Interval Partitioning

PL/SQL
UTL_HTTP

3. PL/SQL

4. Memoptimized Ingest
5. JSON Storage

6. Database
In-Memory

7. Oracle Grafana
Plugin (PromQL

or SQL)

8. DBMS_SCHEDULER

9. ADO/ILM Policies

• Exadata Real-Time Insights is a new and comprehensive
monitoring solution for extracting detailed statistics/metrics
across the Exadata Machine.

• Over 2000 events are collected and streamed from Exadata Database and Storage
Servers every second.

• Metrics such as CPU utilization, Memory Utilization, Available Disk Space, etc.

• Real-Time Insights brings DevOps Monitoring to Exadata Systems

• A monitoring dashboard can be built using an visualization tool such as Grafana to
provide a single portal to observe Exadata metrics over time.

Copyright © 2022, Oracle and/or its affiliates

Exadata Real-Time Insights

Metrics

Metrics

52

• Monitor the health of over 500 Exadata Servers at an Oracle data center in real-time.

• Over 2.5 Billion Exadata metrics are captured in an Oracle Database over a 24h period.

• The demo will show how anomalous behavior can be detected instantly thanks to Database In-Memory.

Copyright © 2022, Oracle and/or its affiliates

DevOps Monitoring Demo | Setup

Dashboards

Interval Partitioned Table

ORDS

JSON Storage

Database
In-Memory

Oracle DB
Grafana Plugin

(SQL)

Ingest Metrics

Queries

Exadata Machines

Sample Metric:
{“metric”: “CL_TEMP”,
“value”: 25,
“time”: “10-13-2022 11:40PM PST”,
“tags”:{“fleet”: “phx”,

“server”: “phx123”,
“unit”: “C”}

}

53

• Exadata metrics are stored in an Hourly Interval
Partitioned table

• Partitioning the data by TIME enables partition pruning which
accelerates queries by only scanning data in the desired time
window

• Every metric has a NAME, TAGS describing the metric and
its source as a JSON, VALUE, and TIME it was generated

• Each TAG has 7 labels (e.g. the “server” label represents the
name of the server that generated the metric)

• Every row is ~170B in size uncompressed

Copyright © 2022, Oracle and/or its affiliates

DevOps Monitoring Demo | Data Model

Name Type
----------- ------------
METRIC_NAME VARCHAR2(200)
TAGS JSON
VALUE NUMBER
TIME NUMBER

CL_TEMP, /* Storage Server Temp */
{
"objectName" : "EDSCELL2",
"unit" : "C",
"server“ : "phxdbfcm99",
"nodeType“ : “STORAGE",
"fleet“ : "phx",
"pod“ : "phxdbfcm99",
"cluster" : “phxdbfcm"

}, /* Tags describing the metric */
42, /* Value of Temperature */
1666026000 /* Time in epoch secs */

Schema

Sample Metric Row

54

Without Ingestion With Ingestion

• Consider the query to find the Number of distinct servers that have generated metrics in the
last 1 hour
• A local-partitioned index on (TIME, JSON_VALUE(TAGS, ‘$.SERVER’)) can achieve 10X

faster query execution over No In-Memory full table scans

• However, it is still 10X-15X slower than In-Memory query execution

• In-Memory query execution is super-charged through Aggregation pushdown, optimized JSON
evaluation, Min-max pruning, etc. which are not available in indexed execution

• Indexes occupy additional space, and the database needs a large buffer cache to avoid I/Os
• For e.g., the index described above is 75GB in size (~18% of data size)

• Different indexes need to be created to accelerate other dashboard queries (e.g. index on
(TIME, JSON_VALUE(TAGS, ‘$.NODETYPE’)) to find number of distinct storage servers)

• Further, indexes require maintenance which can slow down DMLs significantly

• Thus, In-Memory is the only solution that can provide instantaneous Real-Time analytics

Copyright © 2022, Oracle and/or its affiliates

DevOps Monitoring Demo | Indexes

71

• Database In-Memory is essential for use-cases like DevOps Monitoring, where real-time
anomaly detection and drill-down analysis is absolutely needed.

• Any loss of time identifying and triaging irregularities in your data fleet can amount to customer dissatisfaction
and loss of revenue.

• The demo showed how Database In-Memory could be used to speed up Exadata
metrics monitoring by 400x compared to traditional buffer cache row-based processing.

• With In-Memory enabled, we were able to detect and identify anomalous servers in the data center, and
subsequently drill-down into the metric events to identify a potential root cause, all before the non In-Memory
dashboard could even reveal that there were problem servers in the fleet.

• Database In-Memory would still be 10-15X faster than system with analytic indexes. But
indexes are not practical because of a) high DML cost, b) high I/O due to space needed

Copyright © 2022, Oracle and/or its affiliates

Demo Summary

72

73 Copyright © 2022, Oracle and/or its affiliates

Research and Development Opportunities

• Compression Technology

• Hardware Acceleration

• Approximate Indexes

• Simplifying SQL

• Optimizing Algorithms for Database Operations and SQL Functionality

• Machine Learning and Expert Systems for Data Management

• Mixed Workload – Single Database for Operational Data and Reporting

• In-Memory Technology (Analytics and OLTP)

Event Stream Processing and more

74 Copyright © 2022, Oracle and/or its affiliates

Thank You.

db_career_us_grp@oracle.com

