WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 10: Isolation

Xiangyao Yu
10/10/2022

Announcement

Guest lecture on Wednesday (Oct. 12) from PingCAP (in-person)

Round-table discussion after the lecture
— Time: 2:30—3:30 PM
— Location: Room 4310 in CS department

Today’s Paper: Isolation

A Critique of ANSI SQL Isolation Levels

Hal Berenson Microsoft Corp. haroldb@microsoft.com
Phil Bernstein Microsoft Corp. philbe@microsoft.com
Jim Gray U.C. Berkeley gray@crl.com

Jim Melton Sybase Corp. Jjim.melton@sybase.com
Elizabeth O’Neil UMass/Boston coneil @cs.umb.edu
Patrick O'Neil UMass/Boston poneil @cs.umb.edu

Abstract: ANSI SQL-92 [MS, ANSI] defines Isolation
Levels in terms of phenomena: Dirty Reads, Non-Re-
peatable Reads, and Phantoms. This paper shows that these
phenomena and the ANSI SQL definitions fail to properly
characterize several popular isolation levels, including the

The ANSI isolation levels are related to the behavior of lock
hedul Some lock schedulers allow i

vary the scope and duration of their lock requests, thus dc-

parting from pure two-phase locking. This idea was intro-

duced by [GLPT], which defined Degrees of Consistency in

dard locking impl ol' the levels covered. three ways: locking, data-flow graphs, and anomalies.
Ambiguity in the of the y is investi- Defining i ion levels by ph (: lics) was
gated and amore formal statement is amved at; in addition intended to allow non-lock-based implementations of the
new h that bellcr h lation types are SQL standard.
duced. Finally, an multiversion isolati . .
type, called Snapshot Isolalmn. is defined. This paper shows a number of weaknesses in the anomaly
approach to defining isolation levels. The three ANSI phe-
1. Introduction nomena are ambiguous, and even in their loosest interpreta-
tions do not exclude some anomalous behavior that may
R ions at di lation levels arise in execution histories. This leads to some counter-in-
allows apphcauou designers (o trade oIT concurrency and tuitive results. In particular, lock-based isolation levels
for Lower i ion levels i increase have dlffcmnl charnclcnsucs than their ANSI equivalents.
actic at the risk of allowi This is d g because | database systems
to observe a fuzzy or i database state. S typically use locking imj lementations. Additionally, the
some transactions can execute at the highest isolation lcvcl ANSI g do not g a number of
(perfect serializability) while ing transac- types of isolation lcchI lr:hnvnor that are popu.lar in com-
tions running at a lower isolation level can access states mercial systems. Ad to
that are not yet committed or that postdate states the trans- these isolation le’ are 3“!!‘3'0" here.
action read carlier [GLPT]. Of course, transactions running - z
Section 2 introd the basic logy of isol lev-

at lower isolation levels can produce invalid data.
Application designers must guard against a later transaction
running at a higher isolation level accessing this invalid
data and propagating such errors.

The ANSI/ISO SQL-92 specifications [MS, ANSI]define four
isolation levels: (1) READ UNCOMMITTED, (2) READ
COMMITTED, (3) REPEATABLE READ, (4) SERIALIZABLE.
These levels are defined wu.h the classical :enahuhhly def-

els. It defines the ANSI SQL and lockmg isolation levels.

Section 3 examines some drawbacks of the ANSI isolation
levels and proposes a new phenomenon. Other popular iso-
lation levels are also defined. The various definitions map
between ANSI SQL isolation levels and the degrees of con-
sistency defined in 1977 in [GLPT). They also encompass
Chris Date’s definitions of Cursor Stability and Repeatable
Read (DAT] I)lscussmg the isolation levels in a uniform

inition, plus three prohibi called
phenomena: Dmy Read, Non- repealable Read, and
Phantom. The concept of a phenomenon is not exphculy
defined in the ANSl specifications, but lhe specifications

i k reduces lings arising from indepen-
dent terminology.

Secuon 4 introduces a multiversion concurrency control

suggest that p are op q that h called Snapshot Isol that avmds lhe AN SI
may lead to lous (perhaps ializable) behavior. SQL ph but is not serializabl

We refer to anomalies in what follows when making sug- is interesting in its own right, since it provides a reduced-
gested additions to l.he sel of ANSI phenomena. As shown 1 level app h that lies b READ COM-

later, there is a between and
phenomena, but this distinction is not crucial for a general
understanding.

Permission to copy without fee all or part of this material is
granted provided thal the copies are not made or distributed for
direct e ACM notice and the
title of the pubucallon and7ts dam appear, and notice is given
that copyi of the of C
Machinery. 0 oopy otherwise, or to republish, requires
a fee and/or specific perrmssq
SIGMOD * 95,San Jose , CA USA
© 1995 ACM 0- 89791-731—6/95/0005 .$3.50

MITTED and REPEATABLE READ. A new formalism
(available in the longer version of this conference paper
[OOBBGM]) connects reduced isolation levels for multiver-
sioned data to the classical single-version locking serializ-
ability theory.

Section 5 explores some new lies to diff iate the
lation levels i ds in Secti 3 and 4. The ex-

u:nded ANSI SQL phenomcna pmposed here lack the power

to and Cursor Stability.

Section 6 presents a Summary and Conclusions.

SIGMOD Record, 1995

Agenda

ANSI isolation levels
Cursor stability and snapshot isolation

Complexity of isolation

Agenda

ANSI isolation levels
Cursor stability and snapshot isolation

Complexity of isolation

Long vs. Short Locks

Short locks
— Locks held for the duration of a single action

Long locks
— Locks held to the end of the transaction

In strict two-phase locking, a transaction holds only long locks

Recap: Degree of Consistency

Degree 3: Serializability (assuming no phantom effect)
— Long locks for reads and writes

Recap: Degree of Consistency

Degree 3: Serializability (assuming no phantom effect)
— Long locks for reads and writes

Degree 2: Read Committed
— Long locks for writes
— Short locks for reads

Recap: Degree of Consistency

Degree 3: Serializability (assuming no phantom effect)
— Long locks for reads and writes

Degree 2: Read Committed
— Long locks for writes
— Short locks for reads

Degree 1: Read Uncommitted
— Long locks for writes
— No lock for read

Recap: Degree of Consistency

Degree 3: Serializability (assuming no phantom effect)
— Long locks for reads and writes

Degree 2: Read Committed
— Long locks for writes
— Short locks for reads

Degree 1: Read Uncommitted
— Long locks for writes
— No lock for read

Degree O:
— Short locks for writes
— No lock for read

10

ANSI Isolation Levels

Table 1. ANS| SQL Isolation Levels Defined in terms of the Three Original Phenomena

Isolation Level P1 (or A1) P2 (or A2) P3 (or A3)
| Dirty Read | Fuzzy Read Phantom
Degree 1 ANSI READ UNCOMMITTED Possible Possible Possible
Degree 2 ANSI READ COMMITTED Not Possible Possible Possible :I
ANS| REPEATABLE READ Not Possible Not Possible Possible
Degree 3 ANOMALY SERIALIZABLE Not Possible Not Possible Not Possible

ANSI SQL-92 defines four isolation levels by phenomena

The original definitions were ambiguous

This lecture focuses on the “correct” definitions

11

Notation

w1[x]: transaction 1 writes record X
r2[y]: transaction 2 reads record y

w1[P] (r1[P]): transaction 1 writes (reads) records that satisty
predicate P

c1: commit of transaction 1

al: abort of transaction 1

12

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on

Level = Locking Data Items and Predicates Data Items and Predicates
| Isolation Level (the same unless noted) (always the same)

Degree 3 = Locking Well-formed Reads Well-formed Writes,
LSERlAUZABl—E Long duration Read locks (both) Long duration Write locks

13

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency
Level = Locking

Isolation Level

Read Locks on
Data Items and Predicates
(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

Locking
REPEATABLE READ

Well-formed Reads
Lon rati -i

Short duration Read Predicate locks

Well-formed Writes,
Long duration Write locks

Degree 3 = Locking
SERIALIZABLE

Well-formed Reads

Long duration Read locks (both)

Well-formed Writes,
Lon&duration Write locks

14

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates
| Isolation Level (the same unless noted) (always the same)
Locking Waell-formed Reads Well-formed Writes,
REPEATABLE READ Long durati -] Long duration Write locks H
Short duration Read Predicate locks
Degree 3 = Locking Well-formed Reads

SERIALIZABLE

Long duration Read locks (both)

Well-formed Writes,
Lon&duration Write locks

Phenomenon P3: Phantom

r1[P]...w2[y in P]... (c1 or a1) and (c2 or a2) any order)
— Anomalous behavior: multiple r[P]’s return different results

P3 is allowed in repeatable read but forbidden in serializable

15

Phantom Effect

Sailors

Age

Rating

80

75

90

NI DN —

85

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

16

Phantom Effect

Sailors

Age

Rating

80

75

90

NI DN —

85

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1

17

Phantom Effect

Sailors

Age

Rating

80

75

90

85

99

- (NI —

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)

18

Phantom Effect

Sailors

Age Rating
80 1

75 1

90 2

85 2

99 1

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1
‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

19

Phantom Effect

Sailors

Age

Rating

80

1

75

1

85

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

20

Phantom Effect

Sailors

Age Rating
80 1

75 1

85 2

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

1 locks oldest sailor in rating 2

21

Phantom Effect

Sailors

Age

Rating

80

1

75

1

85

99

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

1 locks oldest sailor in rating 1

‘2 Inserts a tuple with (age:99, rating:1)
2 deletes oldest sailor with rating 2

2 commits

1 locks oldest sailor in rating 2

T1 commits. Output: (80,1), (85, 2)

22

Phantom Effect

Sailors

Age Rating

80 1

75 1

85 2

99 1
Phantom

T1: Find oldest sailors for ratings 1 and 2

T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

Output: (80,1), (85, 2)

Different from all sequential execution output
—T1 -> T2. Output: (80, 1), (90, 2)
— T2 -> T1. Output: (99, 1), (85, 2)

23

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records

Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates
| Isolation Level (the same unless noted) (always the same)

Degree 2 = Locking
READ COMMITTED

Waell-form Well-formed Writes,
Short duration Read locks (both) Long duration Write locks

Locking
REPEATABLE READ

Waell-formed Reads Well-formed Writes,

Long duration data-item Read locks | Long duration Write iocks
Short duration Read Predicate locks

Phenomenon P2: Fuzzy Read

r1[x]...w2[x]... (c1 or al) and (c2 or a2) any order)
— Anomalous behavior: multiple r[x]’s return different results

P2 is allowed in read committed but forbidden in repeatable read

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records

Long locks: hold the lock until transaction commits or aborts

Consistency
Level = Locking
| Isolation Level

Read Locks on
Data Items and Predicates
(the same qnless noted)

Write Locks on
Data Items and Predicates
(always the same)

Degree 1 = Locking
READ UNCOMMITTED

none required

Well-formed Writes
Long duration Write locks

Degree 2 = Locking
READ COMMITTED

Well-formed Reads
Short duration Read locks (both)

Well-formed Writes,
Long duration Write locks

Phenomenon P1: Dirty Read

w1[x]...r2[x]... (c1 oral) and (c2 or a2) any order)
— Anomalous behavior: transaction reads data that was never committed

P1 is allowed in read uncommitted but forbidden in read committed

25

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

ﬂ Consistency Read Locks on Write Locks on I
| Level = Locking Data Items and Predicates Data Items and Predicates
Isolation Level (the same unless noted) (always the same)
Degree 0 none required Well-formed Writes
Short duration Write locks
[Degree 1 = Locking none required Well-formed Writes
READ UNCOMMITTED B Long duration Write locks

Phenomenon PO: Dirty Write

wi[x]...w2[x]... (c1 or al) and (c2 or a2) any order)
— Anomalous behavior: when transaction 1 rolls back x, unclear what value to roll back to

PO is forbidden in all ANSI isolation levels

Equivalent Definitions

Table 3. ANSI SQL Isolation Levels Defined in terms of the four phenomena

—

i PO P1 P2 P3
Isolation Level Dirty Write | Dirty Read | Fuzzy Read| Phantom
READ UNCOMMITTED | Not Possible | Possible Possible Possible
READ COMMITTED Not Possible | Not Possible | Possible Possible
REPEATABLE READ Not Possible | Not Possible | Not Possible | Possible
SERIALIZABLE Not Possible | Not Possible | Not Possible | Not Possible

Level = Locking

Consistency
Isolation Level

Read Locks on
Data Items and Predicates
(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

Degree 1 = Locking none required Well-formed Writes

LREAD UNCOMMITTED Long duration Write locks
Degree 2 = Locking Well-formed Reads Well-formed Writes,

LREAD COMMITTED Short duration Read locks (both) Long duration Write locks |
Locking Well-formed Reads Well-formed Writes, l
REPEATABLE READ Long duration data-item Read locks | Long duration Write locks

Short duration Read Predicate locks

Degree 3 = Locking
SERIALIZABLE

Well-formed Reads
Long duration Read locks (both)

Well-formed Writes,
Loniduration Write locks

27

Hierarchy of Isolation Levels

Isolation level L1 is weaker than isolation level L2, denoted L1 << L2,
iIf all non-serializable histories that obey the criteria of L2 also satisfy
L1 and there is at least one non-serializable history that can occur at

level L1 but not at level L2.

Read Uncommitted
<< Read Committed (RC)
<< Repeatable Read (RR)
<< Serializability (SR)

29

Agenda

ANSI isolation levels
Cursor stability and snapshot isolation
Complexity of isolation

30

Cursor Stability

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates I
Isolation Level (the same unless noted) (always the same)
Degree 2 = Locking Well-formed Reads Well-formed Writes,
READ COMMITTED Short duration Read locks (both) Long duration Write locks
Cursor Stability Waell-formed Reads Well-formed Writes,
(see Section 4.1) Read locks held on current of cursorl Long duration Write locks
~Short duration Read Predicate locks
Locking Waell-formed Reads Well-formed Writes,
REPEATABLE READ Long duration data-item Read locks | Long duration Write iocks I
Short duration Read Predicate locks

Cursor: can be viewed as a pointer to one row in a set of rows. The cursor
can only reference one row at a time, but can move to other rows of the
result set as needed

Phenomenon P4: Lost Update

r1[x]...w2[x]...w1[x]...c1

— Anomalous behavior: transaction 2’s update is overwritten by transaction 1 .

Snapshot Isolation (Sl)

t1 t2 Time
: ; > (physical or
Start-Timestamp Commit-Timestamp logical)

All reads see a snapshot of data as of the time the transaction
started (t1)

A transaction can commit if records in write set are not modified by
other transactions between t1 and t2

At commit time, apply all writes with timestamp t2

32

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew

r1[x]...r2[y]...wi[y]...w2[x]...(c1 or c2 occur)
— Transactions see a snapshot that does not reflect the latest updates

33

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew

r1[x]...r2[y]...wi[y]...w2[x]...(c1 or c2 occur)
— Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the
changes before the transaction starts

— Serializability requires no real-time ordering

— Sl can be stronger than SR in this particular aspect

34

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew

r1[x]...r2[y]...wi[y]...w2[x]...(c1 or c2 occur)
— Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the
changes before the transaction starts

— Serializability requires no real-time ordering

— Sl can be stronger than SR in this particular aspect

Strict serializability (i.e., linearizability)
— Serializability + real-time constraint
— E.g., if transaction T1 commits before T2 starts, T1 must precede T2 in the serial order

35

Hierarchy of Isolation Levels

Serializable = Degree 3 == {Date, DB2} Repeatable Read

A5B
s /f_S_B\ Snapshot
P2 / Repeatable Read (___ _ |solation
Oracle P2 A3
Consistent Cursor Stability
Read Y‘,,C p4C A3, ASA, P4
Read Committed = Degreee 2
P1
Read Uncommitted =— Degree 1
PO
Degree 0

36

Agenda

ANSI isolation levels
Cursor stability and snapshot isolation
Complexity of isolation

37

Isolation is Complex

balance1 = 1000
balance2 = 1000
~2 constraint:

qU/\Jp

K balance1 + balance2 = 1000

ball = read(balancel)

bal2 = read(balancel)

If ball + bal2 = 2000
ball = ball — 1000
write(balancel, ball)
dispense cash

else
reject

38

Isolation is Complex

balance1 = 1000
balance2 = 1000

£2) constraint: @
e balancel + balance2 = 1000 S
ball = read(balancel) ball = read(balancel)
bal2 = read(balancel) bal2 = read(balancel)
If ball + bal2 = 2000 If ball + bal2 = 2000
ball = ball — 1000 bal2 = bal2 — 1000

write(balancel, ball)
dispense cash

else
reject

write(balance2, bal2)
dispense cash

else
reject

39

Isolation is Complex

balance1 = 1000
balance2 = 1000
constraint:

[ball = read(balancel)] @

bal2 = read(balancel)

If ball + bal2 = 2000
ball = ball — 1000
write(balancel, ball)
dispense cash

else
reject

balance1 + balance2 = 1000

ball
bal?2

= read(balancel)] @

= read(balancel)

If ball + bal2 = 2000

else

bal2 = bal2 — 1000
write(balance2, bal2)
dispense cash

reject

40

Isolation is Complex

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 = 1000

ball = read(balancel)

bal2 = read(balancel)

[1f ball + bal2 = 2000
ball = ball — 1000
write(balancel, ball)
dispense cash

else
reject

ball
bal?2

= read(balancel)
= read(balancel)

[If ball + bal2 =

2000 |

@

else

bal2 = bal2 — 1000

write(balance?2,
dispense cash

reject

bal2)

41

Isolation is Complex

balance1 = 1000
balance2 = 1000
constraint:

ball = read(balancel)
bal2 = read(balancel)

If ball + bal2 = 2000

(ball = ball — 1000
write(balancel, ball
__dispense cash

else

reject

balance1 + balance2 = 1000

ball
bal?2

= read(balancel)
= read(balancel)

If ball + bal2 = 2000

7

_dispense cash p,

bal2 = bal2 — 1000
write(balance2, bal2)

else

reject

42

Isolation is Complex

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 = 1000

ball = read(balancel) ball = read(balancel)
bal2 = read(balancel) bal2 = read(balancel)
If ball + bal2 = 2000 @ If ball + bal2 = 2000
 ball = ball — 1000 (bal2 = bal2 — 1000
write(balancel, ball write(balance2, bal2)
__dispense cash _dispense cash)
else else
reject reject

balance1 = 0 and balance2 = 0. Constraint violated!

43

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

%4 DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

44

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Why you should pick strong consistency, whenever possible
3 Google Cloud January 2018

‘ ‘ Systems that don't provide strong consistency ...
create a burden for application developers ’ ’

45

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their own with ’ ’
different degrees of success.

46

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their own with ’ ’
different degrees of success.

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) .

ACID: Isolation — Why Strong Isolation?

An alternative approach:
Optimize the performance of strong isolation instead of relaxing it

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their own with ’ ’
different degrees of success.

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) ,,

Q/A — Isolation

How is snapshot isolation implemented nowadays?

Are these isolation levels used today?

Are there more isolation levels introduced in modern systems?
Do most applications need serializability?

Can multiple isolation levels coexist at transaction granularity?
What are desired properties of a good isolation level?

49

Next Lecture

Submit a review for the Wednesday guest lecture
— Deadline: Oct. 14, 11:59pm
— Use the same format as a paper review

Submit review by next Monday

— H. T. Kung, John T. Robinson, On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems, 1981

50

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/occ.pdf

