
Xiangyao Yu
10/10/2022

CS 764: Topics in Database Management Systems
Lecture 10: Isolation

1



Announcement
Guest lecture on Wednesday (Oct. 12) from PingCAP (in-person)

Round-table discussion after the lecture 
– Time: 2:30—3:30 PM
– Location: Room 4310 in CS department

2



Today’s Paper: Isolation

SIGMOD Record, 1995 3



Agenda

4

ANSI isolation levels 
Cursor stability and snapshot isolation 
Complexity of isolation



Agenda

5

ANSI isolation levels 
Cursor stability and snapshot isolation 
Complexity of isolation



Long vs. Short Locks
Short locks 

– Locks held for the duration of a single action 

Long locks
– Locks held to the end of the transaction

In strict two-phase locking, a transaction holds only long locks

6



Recap: Degree of Consistency

7

Degree 3: Serializability (assuming no phantom effect)
– Long locks for reads and writes



Recap: Degree of Consistency

8

Degree 3: Serializability (assuming no phantom effect)
– Long locks for reads and writes

Degree 2: Read Committed
– Long locks for writes
– Short locks for reads



Recap: Degree of Consistency

9

Degree 3: Serializability (assuming no phantom effect)
– Long locks for reads and writes

Degree 2: Read Committed
– Long locks for writes
– Short locks for reads

Degree 1: Read Uncommitted
– Long locks for writes
– No lock for read



Recap: Degree of Consistency

10

Degree 3: Serializability (assuming no phantom effect)
– Long locks for reads and writes

Degree 2: Read Committed
– Long locks for writes
– Short locks for reads

Degree 1: Read Uncommitted
– Long locks for writes
– No lock for read

Degree 0: 
– Short locks for writes
– No lock for read



ANSI Isolation Levels

ANSI SQL-92 defines four isolation levels by phenomena
The original definitions were ambiguous

This lecture focuses on the “correct” definitions

11

Degree 3

Degree 2
Degree 1



Notation
w1[x]: transaction 1 writes record x

r2[y]: transaction 2 reads record y

w1[P] (r1[P]): transaction 1 writes (reads) records that satisfy 
predicate P

c1: commit of transaction 1

a1: abort of transaction 1
12



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

13



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

14



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

15

Phenomenon P3: Phantom
r1[P]…w2[y in P]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: multiple r[P]’s return different results
P3 is allowed in repeatable read but forbidden in serializable



Phantom Effect

16

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

Age Rating
80 1
75 1
90 2
85 2

Sailors



Phantom Effect

17

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1

Age Rating
80 1
75 1
90 2
85 2

Sailors



Phantom Effect

18

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)

Age Rating
80 1
75 1
90 2
85 2
99 1

Sailors



Phantom Effect

19

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2

Age Rating
80 1
75 1
90 2
85 2
99 1

Sailors



Phantom Effect

20

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits

Age Rating
80 1
75 1

85 2
99 1

Sailors



Phantom Effect

21

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits
T1 locks oldest sailor in rating 2

Age Rating
80 1
75 1

85 2
99 1

Sailors



Phantom Effect

22

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits
T1 locks oldest sailor in rating 2
T1 commits. Output: (80,1), (85, 2)

Age Rating
80 1
75 1

85 2
99 1

Sailors



Phantom Effect

23

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest 
sailor with rating 2

Output: (80,1), (85, 2)

Different from all sequential execution output
– T1 -> T2. Output: (80, 1), (90, 2)
– T2 -> T1. Output: (99, 1), (85, 2)

Age Rating
80 1
75 1

85 2
99 1

Sailors

Phantom



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

24

Phenomenon P2: Fuzzy Read
r1[x]…w2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: multiple r[x]’s return different results
P2 is allowed in read committed but forbidden in repeatable read



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

25

Phenomenon P1: Dirty Read
w1[x]…r2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: transaction reads data that was never committed
P1 is allowed in read uncommitted but forbidden in read committed



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

26

Phenomenon P0: Dirty Write
w1[x]…w2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: when transaction 1 rolls back x, unclear what value to roll back to
P0 is forbidden in all ANSI isolation levels

Degree 0 none required Well-formed Writes
Short duration Write locks



Equivalent Definitions

27



Hierarchy of Isolation Levels
Isolation level L1 is weaker than isolation level L2, denoted L1 << L2, 
if all non-serializable histories that obey the criteria of L2 also satisfy 
L1 and there is at least one non-serializable history that can occur at 
level L1 but not at level L2. 

Read Uncommitted 
<< Read Committed (RC)

<< Repeatable Read (RR)
<< Serializability (SR)

29



Agenda

30

ANSI isolation levels 
Cursor stability and snapshot isolation 
Complexity of isolation



Cursor Stability

Cursor: can be viewed as a pointer to one row in a set of rows. The cursor 
can only reference one row at a time, but can move to other rows of the 
result set as needed

Phenomenon P4: Lost Update
r1[x]…w2[x]…w1[x]…c1

– Anomalous behavior: transaction 2’s update is overwritten by transaction 1
31



Snapshot Isolation (SI)

All reads see a snapshot of data as of the time the transaction 
started (t1)

A transaction can commit if records in write set are not modified by 
other transactions between t1 and t2

At commit time, apply all writes with timestamp t2

32

t1 t2

Start-Timestamp Commit-Timestamp

Time
(physical or 
logical)



Snapshot Isolation vs. Serializability 

33

Anomaly A5B: Write Skew
r1[x]…r2[y]…w1[y]…w2[x]…(c1 or c2 occur)

– Transactions see a snapshot that does not reflect the latest updates



Snapshot Isolation vs. Serializability 

34

Anomaly A5B: Write Skew
r1[x]…r2[y]…w1[y]…w2[x]…(c1 or c2 occur)

– Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the 
changes before the transaction starts 

– Serializability requires no real-time ordering 
– SI can be stronger than SR in this particular aspect



Snapshot Isolation vs. Serializability 

35

Anomaly A5B: Write Skew
r1[x]…r2[y]…w1[y]…w2[x]…(c1 or c2 occur)

– Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the 
changes before the transaction starts 

– Serializability requires no real-time ordering 
– SI can be stronger than SR in this particular aspect

Strict serializability (i.e., linearizability)
– Serializability + real-time constraint 
– E.g., if transaction T1 commits before T2 starts, T1 must precede T2 in the serial order



Hierarchy of Isolation Levels

36



Agenda

37

ANSI isolation levels 
Cursor stability and snapshot isolation 
Complexity of isolation



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

38

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal2 = bal2 – 1000
write(balance2, bal2)
dispense cash

else
reject

bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

39

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal2 = bal2 – 1000
write(balance2, bal2)
dispense cash

else
reject

bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

40

2

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000

1



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal2 = bal2 – 1000
write(balance2, bal2)
dispense cash

else
reject

bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

41

4

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000

3



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal2 = bal2 – 1000
write(balance2, bal2)
dispense cash

else
reject

bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

42

6

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000

5



bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal2 = bal2 – 1000
write(balance2, bal2)
dispense cash

else
reject

bal1 = read(balance1) 
bal2 = read(balance1) 
If bal1 + bal2 ≥ 2000

bal1 = bal1 – 1000
write(balance1, bal1)
dispense cash

else
reject

Isolation is Complex

43

balance1 = 1000
balance2 = 1000
constraint:

balance1 + balance2 ≥ 1000

balance1 = 0 and balance2 = 0. Constraint violated! 

65



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 17 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

44



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 17 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

Why you should pick strong consistency, whenever possible

Systems that don't provide strong consistency … 
create a burden for application developers

January 2018

45



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 17 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

46

Q: “What is the biggest mistake in your life as an engineer?”

Not putting distributed transactions in BigTable.
In retrospect lots of teams wanted that capability and built their own with 
different degrees of success.

March 2016A: (from Jeff Dean)



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 17 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) 47

Q: “What is the biggest mistake in your life as an engineer?”

Not putting distributed transactions in BigTable.
In retrospect lots of teams wanted that capability and built their own with 
different degrees of success.

March 2016A: (from Jeff Dean)



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 17 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) 48

Q: “What is the biggest mistake in your life as an engineer?”

Not putting distributed transactions in BigTable.
In retrospect lots of teams wanted that capability and built their own with 
different degrees of success.

March 2016A: (from Jeff Dean)

An alternative approach: 
Optimize the performance of strong isolation instead of relaxing it



Q/A – Isolation

49

How is snapshot isolation implemented nowadays? 
Are these isolation levels used today?
Are there more isolation levels introduced in modern systems? 
Do most applications need serializability? 
Can multiple isolation levels coexist at transaction granularity? 
What are desired properties of a good isolation level? 



Next Lecture
Submit a review for the Wednesday guest lecture 

– Deadline: Oct. 14, 11:59pm
– Use the same format as a paper review

Submit review by next Monday 
– H. T. Kung, John T. Robinson, On Optimistic Methods for Concurrency 

Control. ACM Transactions on Database Systems, 1981

50

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/occ.pdf

