
Xiangyao Yu
10/19/2022

CS 764: Topics in Database Management Systems
Lecture 13: Modern OCC

1



Announcement
Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)

2



Project Idea Pitch
Problem Statement - Implement radix partitioned joins in a vectorized 
database engine.

Related work - Some key papers:
1. An Experimental Comparison of Thirteen Relational Equi-Joins in Main 

Memory [Schuh et al.]
2. Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Underlying 

Hardware [Balkesen et al.]
3. To Partition, or Not to Partition, That is the Join Question in a Real System 

[Bandle et al.]

Reach out to aaratik@cs.wisc.edu if interested!

3



Project Idea Pitch

4

joins

-
partitioned

• ◦ n - partitioned

\

- aem{[t☐ÑJ
build

⇐ probe

partin:{ ☐ ☐
costly?

J ☐
→ cache - inefficient

- cache efficient



Today’s Paper: Modern OCC

SOSP, 2013 5



Outline
Multi-core scalability bottleneck 
Silo OCC protocol 

– Read phase 
– Validation phase 
– Write phase 

Discussion
– Serializability proof sketch 
– Silo vs. OCC 1981
– Phantom protection 

OCC vs. 2PL

6



Timestamp Allocation Bottleneck

Even a single atomic 
instruction can become a 
scalability bottleneck

7

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)



Timestamp Allocation Bottleneck

Even a single atomic 
instruction can become a 
scalability bottleneck

8

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

X. Yu et al. Staring into the Abyss: An Evaluation of Concurrency 
Control with One Thousand Cores, VLDB 2014



Silo Read Phase
Each tuple contains a 64-bit TID word

9

Status bits Sequence number Epoch number
0 63

F-

ISSA
a

Mookbit .



Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)

10

Status bits Sequence number Epoch number
0 63

=



Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)

11

Status bits Sequence number Epoch number
0 63

// read a record 
do 

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 

⇒ t

→

In



Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)

12

// read a record 
do 

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 

Status bits Sequence number Epoch number
0 63

// write a record 
v1.lock_bit = 1
v1.update()
v1.update_seq_number()
v1.lock_bit = 0

↑⇔_=•



Silo Validation Phase
Phase 1: Lock the write set

13

☆ _

A



Silo Validation Phase
Phase 1: Lock the write set

Q: Why need to sort write set?

14



Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
– Validation fails if (1) the tuple is 

modified since the earlier read or (2) 
the tuple is locked by another 
transaction

15

try ✗



Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
– Validation fails if (1) the tuple is 

modified since the earlier read or (2) 
the tuple is locked by another 
transaction

Q: If a tuple is modified since a 
transaction’s earlier read, can the 
transaction still be serializable? 

16

IT #%•-
T2 p¥p



Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set

Phase 3: Write phase

17



Silo OCC is Serializable 

18

read(A) read(B) read(C)

lock write set

serialization 
point

validate read set

write DB and release locks±



Silo OCC is Serializable 

Proof idea
– The Silo schedule is equivalent to an idealized schedule where all reads and 

writes of a transaction occur at the serialization point
– (Same strategy can be used to prove that 2PL is serializable)

19

read(A) read(B) read(C)

lock write set

serialization 
point

validate read set

write DB and release locks

↑



Silo vs. OCC 1981

20

Silo OCC 1981

:



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections

21

Silo OCC 1981



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
• Silo validates using tuple versions; OCC’81 validates against write 

set of previous transactions

22

Silo OCC 1981



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
• Silo validates using tuple versions; OCC’81 validates against write 

set of previous transactions

23

Silo OCC 1981

Q: When is OCC 1981’s validation better than Silo’s validation? 

d-



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

24



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

25

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;

Gap locks

-

◦
I



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

– Next key lock = index node lock + gap lock before the record

26

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;

Gap locks

a-

☐



Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well

27



Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well

28

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;



Discussions
Epochs in Silo: A mechanism to enable parallel logging

29



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

30



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

Priority and preemption of transactions? 

31



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

Priority and preemption of transactions? 

Opacity: Strict serializability for both committed and aborted 
transactions 

– Achieve opacity in 2PL vs. OCC? 

32



Polaris
Goal: add priority mechanism to Silo
Key idea: add minimum pessimism into the protocol 

– Transactions with higher priority can block transactions with lower priority 
– Transactions within the same priority level run Silo

33Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, Xiangyao Yu, Polaris: Enabling Transaction Priority in Optimistic Concurrency Control, SIGMOD 2023



Polaris
Goal: add priority mechanism to Silo
Key idea: add minimum pessimism into the protocol 

– Transactions with higher priority can block transactions with lower priority 
– Transactions within the same priority level run Silo

34



Polaris 

35

Read only workload

Both Silo and Polaris achieve high 
throughput and low tail latency 



Polaris 

36

Read only workload

Both Silo and Polaris achieve high 
throughput and low tail latency 

High-contention workload

Silo has decreased throughput and very 
high tail latency

– Some transactions experience repeated aborts

Polaris’ performance approaches 2PL at 
high contention 

↓

@
*

⇐É
←

↑→



Q/A – Modern OCC

37

Silo applicable only to in-memory database? 
How to achieve durability for in-memory database? 
Extend Silo to a partitioned distributed system? 
Modern systems using this concurrency control mechanism? 
Support interactive query besides on-shot? 
Global epoch number becomes a contention point? 



Next Lecture
Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)
Submit a review for the guest lecture 

– Deadline: Oct. 28 (Friday), 11:59pm
– Use the same format as a paper review

Submit review before next Wednesday 
– Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent Operations on 

B-Trees. ACM Transactions on Database Systems, 1981

38


