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Announcement

Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)



Project Idea Pitch

Problem Statement - Implement radix partitioned joins in a vectorized
database engine.

Related work - Some key papers:

1. An Experimental Comparison of Thirteen Relational Equi-Joins in Main
Memory [Schuh et al.]

2. Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Underlying
Hardware [Balkesen et al.]

3. To Partition, or Not to Partition, That is the Join Question in a Real System
[Bandle et al.]

Reach out to aaratik@cs.wisc.edu if interested!
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Today’s Paper: Modern OCC

Speedy Transactions in Multicore In-Memory Databases

Stephen Tu, Wenting Zheng, Eddie Kohler!, Barbara Liskov, and Samuel Madden
MIT CSAIL and *Harvard University

Abstract

Silo is a new in-memory database that achieves excel-
lent performance and scalability on modern multicore
machines. Silo was designed from the ground up to use
system memory and caches efficiently. For instance, it
avoids all lized points, including that of
centralized transaction ID assignment. Silo’s key contri-
bution is a commit protocol based on optimistic concur-
rency control that provides serializability while avoid-
ing all shared-memory writes for records that were only
read. Though this might seem to complicate the en-
forcement of a serial order, correct logging and recov-
ery is provided by linking periodically-updated epochs
with the commit protocol. Silo provides the same guar-
antees as any serializable database without unnecessary
scalability bottlenecks or much additional latency. Silo
achieves almost 700,000 transactions per second on a
standard TPC-C workload mix on a 32-core machine, as
well as near-linear scalability. Considered per core, this
is several times higher than previously reported results.

1 Introduction

Thanks to drastic increases in main memory sizes and
processor core counts for server-class machines, modern
high-end servers can have several terabytes of RAM and
80 or more cores. When used effectively, this is enough
processing power and memory to handle data sets and
computations that used to be spread across many disks
and machines. However, harnassing this power is tricky;
even single points of contention, like compare-and-
swaps on a shared-memory word, can limit scalability.
This paper presents Silo, a new main-memory
database that achieves excellent performance on multi-
core machines. We designed Silo from the ground up
to use system memory and caches efficiently. We avoid
all centralized contention points and make all synchro-
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nization scale with the data, allowing larger databases to
support more concurrency.

Silo uses a Masstree-inspired tree structure for its un-
derlying indexes. Masstree [23] is a fast concurrent B-
tree-like structure optimized for multicore performance.
But Masstree only supports non-serializable, single-key
transactions, whereas any real database must support
transactions that affect multiple keys and occur in some
serial order. Our core result, the Silo commit protocol, is
a minimal ion serializable commit p 1 that
provides these properties.

Silo uses a variant of optimistic concurrency control
(OCC) [18]. An OCC transaction tracks the records it
reads and writes in thread-local storage. At commit time,
after validating that no concurrent transaction’s writes
overlapped with its read set, the transaction installs all
written records at once. If validation fails, the transaction
aborts. This approach has several benefits for scalability.
OCC writes to shared memory only at commit time, af-
ter the transaction’s compute phase has completed; this
short write period reduces contention. And thanks to the
validation step, read-set records need not be locked. This
matters because the memory writes required for read
locks can induce contention [11].

Previous OCC implementations are not free of scal-
ing bottlenecks, however, with a key reason being the re-
quirement for tracking “anti-dependencies” (write-after-
read conflicts). Consider a transaction 7; that reads a
record from the database, and a concurrent transaction
12 that overwrites the value #; saw. A serializable sys-
tem must order 1; before 7, even after a potential crash
and recovery from persistent logs. To achieve this order-
ing, most systems require that rj communicate with 1,
such as by posting its read sets to shared memory or via
a centrally d ically-i ing transac-
tion ID [18, 19]. Some non-serializable systems can
avoid this communication, but they suffer from anoma-
lies like snapshot isolation’s “write skew” [2].

Silo provides serializability while avoiding all shared-
memory writes for read transactions. The commit proto-
col was carefully designed using memory fences to scal-
ably produce results consistent with a serial order. This
leaves the problem of correct recovery, which we solve
using a form of epoch-based group commit. Time is di-
vided into a series of short epochs. Even though transac-
tion results always agree with a serial order, the system




Outline

Multi-core scalability bottleneck

Silo OCC protocol
— Read phase
— Validation phase
— Write phase

Discussion

— Serializability proof sketch
— Silo vs. OCC 1981
— Phantom protection

OCC vs. 2PL



Timestamp Allocation Bottleneck

atomic_fetch and add(&lsn, size); _ _
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Timestamp Allocation Bottleneck

atomic_fetch_and _add(&lsn, size);
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X. Yu et al. Staring into the Abyss: An Evaluation of Concurrency
Control with One Thousand Cores, VLDB 2014
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits Sequence number Epoch number

0 A A4 63
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits Sequence number Epoch number

[ . —

0 — —

Each read returns consistent value and TID word
— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits

Sequence number

Epoch number

0

Each read returns consistent value and TID word

— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)

// read a record

do
/47v1 = t.read TID word() ,/
/7RS[t.key].data = t.data

_—2 V2 = t.read TID word()

while (vl != v2 or vl.lock bit == 1);

.———'\T

63
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits Sequence number Epoch number
0 63

Each read returns consistent value and TID word
— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)

// read a record // write a record
do vl.lock bit =1
vl = t.read TID word() '

3 ~ vl.update()
RS[t.key].data = t.data <EE;__ ) vl.updagg_seq;number(l

v2 = t.read TID word() vl.lock bit = 0
while (vl != v2 or vl.lock bit == 1);
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Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record); A —

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)
then abort();
for node, version in N do
if node.version # version then abort();
commit-tid <— generate-tid(R, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

13



Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)
then abort();
for node, version in N do
if node.version # version then abort();
commit-tid <— generate-tid(R, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Q: Why need to sort write set?
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Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid f read-tid or not record.latest

or (record.locked and record ¢ W)
then abort(); o

for node, version in N do
if node.version # version then abort();
commit-tid <— generate-tid(R, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Phase 2: Validate the read set

— Validation fails if (1) the tuple is
modified since the earlier read or (2)
the tuple is locked by another
transaction
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Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)
then abort();

for node, version in N do
if node.version # version then abort();
commit-tid <— generate-tid(R, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

T el —+

T R

Phase 1: Lock the write set

Phase 2: Validate the read set

— Validation fails if (1) the tuple is
modified since the earlier read or (2)
the tuple is locked by another
transaction

Q: If a tuple is modified since a
transaction’s earlier read, can the
transaction still be serializable?
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Silo Validation Phase

Data: read set R, write set W, node set N, Phase 1 . LOCk the Write Set
global epoch number E '

// Phase 1

for record, new-value in sorted(W) do ‘

lock(record): Phase 2: Validate the read set

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2 Phase 3: Write phase

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)
then abort();

for node, version in N do
if node.version # version then abort();
commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);




Silo OCC is Serializable

lock write set ‘1 validate read set

|
read(A)

|
read(B)

|
read(C)

serialization write DB and release locks
point

[
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Silo OCC is Serializable

lock write set validate read set
I I I [
read(A) read(B) read(C) serialization write DB and release locks
point
Proof idea f

— The Silo schedule is equivalent to an idealized schedule where all reads and
writes of a transaction occur at the serialization point

— (Same strategy can be used to prove that 2PL is serializable)

19



Silo vs. OCC 1981

// Phase 1 .

for record, new-value in sorted(W) do \ SI IO
lock(record);

compiler-fence();

e+ E; // serialization point

compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record ¢ W)
then abort();

tend = (

(finish tn .= tnc;

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid .= false;

if valid
then ((write phase); tnc = tnc + 1; tn := tnc));

if valid
then (cleanup)
else (backup)).

OCC 1981

20



Silo vs. OCC 1981

// Phase 1 .

for record, new-value in sorted(W) do SI IO
lock(record);

compiler-fence();

e+ E; // serialization point

compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record ¢ W)
then abort();

tend = (

(finish tn .= tnc;

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid .= false;

if valid
then ((write phase); tnc = tnc + 1; tn := tnc));

if valid
then (cleanup)
else (backup)).

OCC 1981

* Silo locks tuples in write set; OCC’81 uses global critical sections

21




Silo vs. OCC 1981

// Phase 1 .
for record, new-value in sorted(W) do SI IO
lock(record);
compiler-fence();
e«+—E; // serialization point
compiler-fence();
// Phase 2
for record, read-tid in R do
if record.tid # read-tid or not record.latest
or (record.locked and record ¢ W)
then abort();

tend = (

(finish tn .= tnc;

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;

if valid
then ((write phase); tnc = tnc + 1; tn := tnc));

if valid
then (cleanup)
else (backup)).

OCC 1981

* Silo locks tuples in write set; OCC’81 uses global critical sections
» Silo validates using tuple versions; OCC’81 validates against write

set of previous transactions
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Silo vs. OCC 1981

// Phase 1 tend = (

for record, new-value in sorted(W) do SI IO (fi inli?c;l tntl= tnc; OCC 1981
. valid := true;

lo.clk(rﬁcord),. for ¢ from start tn + 1 to finish tn do
compiler-fence(); if (write set of transaction with transaction number t intersects read set)
e+ E; // serialization point then valid == Talse; —_
compiler-fence(); if valid

then ((write phase); tnc = tnc + 1; tn := tnc));

//Phase 2 if valid
for record, read-tid in R do then (cleanup)

if record.tid # read-tid or not record.latest else (backup)).

or (record.locked and record ¢ W)
then abort();

* Silo locks tuples in write set; OCC’81 uses global critical sections
» Silo validates using tuple versions; OCC’81 validates against write
set of previous transactions

Q: When is OCC 1981’s validation better than Silo’s validation?
23



Phantom Protection in 2PL

Gap locks

— A gap lock is a lock on a gap between index records, or a lock on the gap
before the first or after the last index record (MySQL reference manual)

24



Phantom Protection in 2PL

Gap locks

— A gap lock is a lock on a gap between index records, or a lock on the gap
before the first or after the last index record (MySQL reference manual)

SELECT *
FROM table
WHERE x > 6;

35 @ 7 (6 10,191&

%Gap IocksﬁV
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Phantom Protection in 2PL

Gap locks

— A gap lock is a lock on a gap between index records, or a lock on the gap
before the first or after the last index record (MySQL reference manual)

— Next key lock = index node lock + gap lock before the record

SELECT *
FROM table

WHERE x > 6 H‘
3,5 ﬂ( 7 ﬂ} 10,1‘3| B

I —

Gap locks

26



Phantom Protection in Silo

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do
lock(record);

compiler-fence();

e+—E; // serialization point

compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)

then abort(): Validate the versions of accessed index
for node, version in N do nod es

if node. ] on th b : ]
Con,lmz(_)ﬁf}‘:rsgl:feét‘:gﬁﬁﬁ Well)a o — May need to consider the next nodes as
// Phase 3 well

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

27



Phantom Protection

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do
lock(record);

compiler-fence();

e+—E; // serialization point

compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record & W)
then abort();

for node, version in N do
if node.version # version then abort();

commit-tid < generate-tid(l-i, W, e);
// Phase 3
for record, new-value in W do

write(record, new-value, commit-tid);
unlock(record);

in Silo

SELECT =*
FROM table
WHERE x > 6;

3,5 / 10, 13

Validate the versions of accessed index
nodes

— May need to consider the next nodes as
well

28



Discussions

Epochs in Silo: A mechanism to enable parallel logging

29



Discussions

Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo?
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Discussions

Epochs in Silo: A mechanism to enable parallel logging
Granularity of locking: Support coarse-grained “locks” in Silo?

Priority and preemption of transactions?
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Discussions

Epochs in Silo: A mechanism to enable parallel logging
Granularity of locking: Support coarse-grained “locks” in Silo?

Priority and preemption of transactions?

Opacity: Strict serializability for both committed and aborted

transactions
— Achieve opacity in 2PL vs. OCC?

32



Polaris

Goal: add priority mechanism to Silo

Key idea: add minimum pessimism into the protocol
— Transactions with higher priority can block transactions with lower priority
— Transactions within the same priority level run Silo

Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, Xiangyao Yu, Polaris: Enabling Transaction Priority in Optimistic Concurrency Control, SIGMOD 2023
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Polaris

Goal: add priority mechanism to Silo

Key idea: add minimum pessimism into the protocol
— Transactions with higher priority can block transactions with lower priority
— Transactions within the same priority level run Silo
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Polaris

Read only workload

NO-WAIT WAIT-DIE —4- WOUND-WAIT SILO —e— POLARIS
© ~N
) e e
P E
59 o0 //‘
o ) TR
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=1 2 - v
c A4 =& pa=y”
,-E - $--+-9 '}r_T:o
€ —i " : . Lo o R : . .
1 8 16 32 48 64 1 8 16 32 48 64
Number of threads Number of threads

Both Silo and Polaris achieve high
throughput and low tail latency
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Polaris

Throughput (Mtxn/s)

Read only workload High-contention workload
NO-WAIT WAIT-DIE =4- WOUND-WAIT SILO —e— POLARIS NO-WAIT WAIT-DIE —4- WOUND-WAIT SILO —e—oyOLARIS
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Number of threads Number of threads Zipfian theta Zipfian theta
a—
Both Silo and Polaris achieve high Silo has decreased throughput and very
throughput and low tail latency high tail latency

— Some transactions experience repeated aborts

Polaris’ performance approaches 2PL at
high contention
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Q/A — Modern OCC

Silo applicable only to in-memory database?

How to achieve durability for in-memory database?

Extend Silo to a partitioned distributed system?

Modern systems using this concurrency control mechanism?
Support interactive query besides on-shot?

Global epoch number becomes a contention point?

37



Next Lecture

Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)

Submit a review for the guest lecture
— Deadline: Oct. 28 (Friday), 11:59pm
— Use the same format as a paper review

Submit review before next Wednesday
— Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent Operations on

B-Trees. ACM Transactions on Database Systems, 1981
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