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CS 764: Topics in Database Management Systems
Lecture 13: Modern OCC
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Announcement
Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)
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Project Idea Pitch
Problem Statement - Implement radix partitioned joins in a vectorized 
database engine.

Related work - Some key papers:
1. An Experimental Comparison of Thirteen Relational Equi-Joins in Main 

Memory [Schuh et al.]
2. Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Underlying 

Hardware [Balkesen et al.]
3. To Partition, or Not to Partition, That is the Join Question in a Real System 

[Bandle et al.]

Reach out to aaratik@cs.wisc.edu if interested!
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Project Idea Pitch
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Today’s Paper: Modern OCC

SOSP, 2013 5



Outline
Multi-core scalability bottleneck 
Silo OCC protocol 

– Read phase 
– Validation phase 
– Write phase 

Discussion
– Serializability proof sketch 
– Silo vs. OCC 1981
– Phantom protection 

OCC vs. 2PL
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Timestamp Allocation Bottleneck

Even a single atomic 
instruction can become a 
scalability bottleneck
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instruction can become a 
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X. Yu et al. Staring into the Abyss: An Evaluation of Concurrency 
Control with One Thousand Cores, VLDB 2014



Silo Read Phase
Each tuple contains a 64-bit TID word
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Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)
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Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)
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// read a record 
do 

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 
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Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)
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// read a record 
do 

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 

Status bits Sequence number Epoch number
0 63

// write a record 
v1.lock_bit = 1
v1.update()
v1.update_seq_number()
v1.lock_bit = 0

↑⇔_=•



Silo Validation Phase
Phase 1: Lock the write set
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Silo Validation Phase
Phase 1: Lock the write set

Q: Why need to sort write set?
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Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
– Validation fails if (1) the tuple is 

modified since the earlier read or (2) 
the tuple is locked by another 
transaction
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Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
– Validation fails if (1) the tuple is 

modified since the earlier read or (2) 
the tuple is locked by another 
transaction

Q: If a tuple is modified since a 
transaction’s earlier read, can the 
transaction still be serializable? 
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Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set

Phase 3: Write phase
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Silo OCC is Serializable 
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Silo OCC is Serializable 

Proof idea
– The Silo schedule is equivalent to an idealized schedule where all reads and 

writes of a transaction occur at the serialization point
– (Same strategy can be used to prove that 2PL is serializable)
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Silo vs. OCC 1981
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Silo OCC 1981
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Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
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Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
• Silo validates using tuple versions; OCC’81 validates against write 

set of previous transactions

22

Silo OCC 1981



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
• Silo validates using tuple versions; OCC’81 validates against write 

set of previous transactions
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Silo OCC 1981

Q: When is OCC 1981’s validation better than Silo’s validation? 

d-



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)
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Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)
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Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

– Next key lock = index node lock + gap lock before the record
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SELECT * 
FROM table 
WHERE x > 6;

Gap locks
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Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well
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Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well
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SELECT * 
FROM table 
WHERE x > 6;



Discussions
Epochs in Silo: A mechanism to enable parallel logging
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Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 
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Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

Priority and preemption of transactions? 

Opacity: Strict serializability for both committed and aborted 
transactions 

– Achieve opacity in 2PL vs. OCC? 

32



Polaris
Goal: add priority mechanism to Silo
Key idea: add minimum pessimism into the protocol 

– Transactions with higher priority can block transactions with lower priority 
– Transactions within the same priority level run Silo

33Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, Xiangyao Yu, Polaris: Enabling Transaction Priority in Optimistic Concurrency Control, SIGMOD 2023



Polaris
Goal: add priority mechanism to Silo
Key idea: add minimum pessimism into the protocol 

– Transactions with higher priority can block transactions with lower priority 
– Transactions within the same priority level run Silo
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Polaris 
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Read only workload

Both Silo and Polaris achieve high 
throughput and low tail latency 



Polaris 
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Read only workload

Both Silo and Polaris achieve high 
throughput and low tail latency 

High-contention workload

Silo has decreased throughput and very 
high tail latency

– Some transactions experience repeated aborts

Polaris’ performance approaches 2PL at 
high contention 

↓

@
*

⇐É
←

↑→



Q/A – Modern OCC
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Silo applicable only to in-memory database? 
How to achieve durability for in-memory database? 
Extend Silo to a partitioned distributed system? 
Modern systems using this concurrency control mechanism? 
Support interactive query besides on-shot? 
Global epoch number becomes a contention point? 



Next Lecture
Guest lecture next Monday (Oct. 24) in virtual mode (zoom only)
Submit a review for the guest lecture 

– Deadline: Oct. 28 (Friday), 11:59pm
– Use the same format as a paper review

Submit review before next Wednesday 
– Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent Operations on 

B-Trees. ACM Transactions on Database Systems, 1981

38


