WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 15: Blink Tree

Xiangyao Yu
10/26/2022

Today’s Paper: B-tree Locking

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN
Carnegie-Mellon University
and

S. BING YAO

Purdue University

The B-tree and its variants have been found to be highly useful (both theoretically and in practice)
for storing large amounts of information, especially on secondary storage devices. We examine the
problem of overcoming the inherent difficulty of concurrent operations on such structures, using a
practical storage model. A single additional “link” pointer in each node allows a process to easily
recover from tree modifications performed by other concurrent processes. Our solution compares
favorably with earlier solutions in that the locking scheme is simpler (no read-locks are used) and
only a (small) constant number of nodes are locked by any update process at any given time. An
informal correctness proof for our system is given.

Key Words and Phrases: database, data structures, B-tree, index organizations, concurrent algorithms,

concurrency controls, locking protocols, correctness, consistency, multiway search trees
CR Categories: 3.73, 3.74, 4.32, 4.33, 4.34, 5.24

1. INTRODUCTION

The B-tree [2] and its variants have been widely used in recent years as a data
structure for storing large files of information, especially on secondary storage
devices [7]. The guaranteed small (average) search, insertion, and deletion time
for these structures makes them quite appealing for database applications.

A topic of current interest in database design is the construction of databases
that can be manipulated concurrently and correctly by several processes. In this

™.

ACM Trans. Database Syst. 1981

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Primary
index

Data store

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Secondary Primary
index index

Data store

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Secondary Primary
index index

\

"

Data store

B-tree

Balanced tree data structure

« Data is sorted
« Supports: search, sequential scan, inserts, and deletes

B-tree

Balanced tree data structure

« Data is sorted
« Supports: search, sequential scan, inserts, and deletes

Properties

* Every node contains k to 2k keys (except root)
* All leaf nodes are at the same level
* kis typically large; a lookup traverses a small number of levels

o o)
38
/ v j \ l
1 4 9 11 12 13 16 30

B-tree vs. B+ Tree vs. B* Tree

B-tree

o] 10 |e

S

» o] 14 16QI

° I
/S S

4 17 119

NS S NS NS
B-tree: data pointers stored in all nodes

B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree

@

o] 10 e 10 e
A i

fST e| 14 164 ;»87 ;-14‘16x|
/N S R A
4 9 13 15 17 119 4 —=| 9 |> 13
NS S NS NS NSNS NS
B-tree: data pointers stored in all nodes

NS

B+ tree:
— Data pointers stored only in leaf nodes

— The leaf nodes are linked

12

B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree B* tree
o] 10 |o| o]l 10 |e o] 10 |o
oo o T
8| el 14 [?] 16 # 8| ol 14 [#] 16 o 8 | o 14 [+ 16 |
/Y S /1 /1
4 9| 13] |15 17| 19 4 F— |>13 > 15 = 17| 19 4 = 9 1315 17]19

NS NS S NN PN YA Y NN N NN

B-tree: data pointers stored in all nodes

B+ tree:
— Data pointers stored only in leaf nodes
— The leaf nodes are linked

B* tree is a misused term in B-tree literature
— Typically means a variant of B+ tree in which each node is least 2/3 full
— In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values) 13

Insert Example

Assume k = 2 (at most 4 keys per node)

insert(9)

A < read(x)

examine A; get ptr to y

A < read(y)

insert 9 into A; must split into A, B
put(B, y)

put(4, y)

Add to node x a pointer to node y’'.

X / veo T |5 \
Y 8 10 12 15

y"

12 15

14

Search Example

Assume k = 2 (at most 4 keys per node) /, Ty 15 \\
) 4 8 10 12 15
search(15)

1. C «read(x)

.

3. examine C; get ptr to y

4,

5.

6.

:

8

9

lb. C <« read(y)

15

Concurrency Challenge

Assume k = 2 (at most 4 keys per node)
Concurrent search and insert can cause

problems

search(15)
C < read(x)

examine C; get ptr to y

© NS oA N

9.
10. C « read(y)
11. error: 15 not found!

insert(9)

A « read(x)

examine A; get ptr to y

A < read(y)

insert 9 into A; must split into A, B
put(B, y)

put(4, y)

Add to node x a pointer to node y’'.

y"

12 15

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

17

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

18

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)
— Lock parent
— Access parent
— Lock child
— Release parent if child is safe

—

o~ W

O© 00N O®

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

19

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)
— Lock parent
— Access parent
— Lock child
— Release parent if child is safe

What if the child is unsafe?

— One solution: split immediately if
child is unsafe

1.
2.

3.
4,
5.

O© 00N O®

lock node A
access node A

lock node B
unlock node A
access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

20

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative

21

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative

Concurrency challenge: search may read wrong node due to split
— Lock coupling solution: guard split using a lock
— Blink tree solution: allow search to find the right node

22

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

23

[,40\99-Q—>x

)47 YGZ \ag-—4—>x

[M 48 , 51 o 5l

uss ,56 ‘560:]—»

Feature 1: link pointer to next node at each level — key idea

Key:46 Key:5I Key:53 Key:56
<Associated <Associated <Associated <Associated
Information>| | Information> Information> Information >

24

Blink-Tree

[» 40 « 99 «—— 2

e

1;25)35 2 40 o] ol » 47 9 62 o _99)

[,. 36).4/._}_"/ al_» 4745: [Js .« 57 .\6_.—}_.[\78 {—:—ox
./ Lé |

.. [m a8, 5 53 5 56 ¢ 56 «—}—» ..

Key:46 Key:5I Key:53 Key:56

<Associated <Associated <Associated <Associated
Information>| | Information> Information> Information >

Feature 1: link pointer to next node at each level — key idea
Feature 2: high key for each node

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b))

—{ 7

) S |

>

?

Before split

26

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b))

— 7 s —» [T

» y o

m | c o—t—> ag C o——p
v T

Before split Step 1

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b))

— 7 s —» [T

» y o

m | c o—t—> ag C o——p
v T

Before split Step 1

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b))

— 7 s —» [T

» y o

m | c o—t—> ag C o——p
v T

Before split Step 1

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b))

— 1 —y [i

» y o

m | c o—t—> ag C o——p
v T

Before split Step 1 Step 2 Step 3

Q: What if another txn searches a key in b’ before step 3 finishes?

B'nk-Tree: Search Algorithm

May follow the link pointer to find a key

root | - o\ root [- & ..

F 10 » 23%—» 5010 » 23.-—>
/’ v

If search for Key=8 If search for Key=24

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node) v [p g 15 g
Concurrency problem is solved in Bk tree 1 J \
Y 8 10 12 15
(a)
search(15) insert(9)

1. C*reaa(x) 2 [p - p 10 @ 15 @« -

g A « read(x)

3. examine C; get ptr to y / / \

4, examine A; get ptr to y

5. A < read(y)

6. insert 9 into A; must split into A, B 28 9 10 - T2 15

7. put(B, y)

8. put(4, y)

9 Add to node x a pointer to node y’'.

10. C « read(y)
11. error: 15 not found!

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
High key indicates when to follow link pointer

search(15) insert(9)
1. € «read(x)
2, A « read(x)
3. examine C; get ptr to y
4, examine A; get ptr to y
5. A < read(y)
6. insert 9 into A; must split into A, B
7 put(B, y)
8 put(A4, y)
g, Add to node x a pointer to node y’'.

10. C « read(y)

15 is found following the link pointer

p 10 @ 15 « -

AN

8 9 10 ST

12 15

33

Concurrent Insert & Insert

Before insert 14 Leaf node split Insert to parent node

root .\ root .\ root .\

\ N\

5010 ¢ 23 o} » F 5010p 23 o~

129 139 179 23¢ o/ > A [125 139140 ¢ B A 12;13?143.——» 179 23 ¢
P R NS v N v

Regular insert process

Concurrent Insert & Insert

root

cee % oo

\

5/010 23 o>

TN

During an insert, the parent node is split by another transaction
— Follow the link point to find the real parent node
— The transaction holds 3 locks in this scenario

Before insert 14

root

129 139 179 23

Lo

Leaf node split

cee .\ cee

N\

5/010/0 23 o

_>

root

//
RN ETExrr B pryrer

Insert to parent node

) .\ oo

. 4

5/07/09’100

11/014g2 o

/////

A d12;13 ,14, of —»

B

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

36

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

o~ W

©® N

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

lock node C

unlock node B
access node C
unlock node C

Lock bit Version number
0
Y 1. read version v3
v3 2. access node A

all

v5

(61~ V)

© o~

. read version v7
. validate version v3
. access node B

read version v5

. validate version v7

access node C

. validate version v5

63

37

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

o~ W

©® N

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

lock node C

unlock node B
access node C
unlock node C

Lock bit

Version number

0

v3

all

v5

—

g AW

© o~

. read version v3
. access node A

. read version v7
. validate version v3

access node B

read version v5

. validate version v7

access node C

. validate version v5

63

No scalability bottleneck

— No write to shared
memory during
traversal

— Upon conflict, retry
from root

— Performance similar to
Blink tree

38

Evaluation

lookup insert

20 A
2 method
o
b ~®= no sync.
o | l 4| -+~ OLC
O 104 .
s —= lock coupling

0 -
1 5 10 15 20 1 5 10 15 20
threads

Figure 3: Scalability on 10-core system for B-tree operations (100M values).

Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.

39

Q/A — Blink Tree

Is Blink-tree optimization used in practice?
Is LSM tree more performance-friendly to concurrent operations?
Actual performance benchmark?

If lock blocks only writers, does a reader see inconsistent data while a
writer is modifying the data?

Why only three locks are needed?
Can the same method apply to main-memory database?

40

Before Next Wednesday

Submit review for
— Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-

Memory Databases. ICDE, 2013

41

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

