Efficient Locking for Concurrent Operations on B-Trees

PHILIP L. LEHMAN
Carnegie-Mellon University

and

S. BING YAO
Purdue University

The B-tree and its variants have been found to be highly useful (both theoretically and in practice) for storing large amounts of information, especially on secondary storage devices. We examine the problem of overcoming the inherent difficulty of concurrent operations on such structures, using a practical storage model. A single additional "link" pointer in each node allows a process to easily recover from tree modifications performed by other concurrent processes. Our solution compares favorably with earlier solutions in that the locking scheme is simpler (no read-locks are used) and only a (small) constant number of nodes are locked by any update process at any given time. An informal correctness proof for our system is given.

Key Words and Phrases: database, data structures, B-tree, index organisations, concurrent algorithms, concurrency controls, locking protocols, correctness, consistency, multiway search trees

CR Categories: 3.73, 3.74, 4.32, 4.33, 4.34, 5.24

1. INTRODUCTION

The B-tree [2] and its variants have been widely used in recent years as a data structure for storing large files of information, especially on secondary storage devices [7]. The guaranteed small (average) search, insertion, and deletion time for these structures makes them quite appealing for database applications.

A topic of current interest in database design is the construction of databases that can be manipulated concurrently and correctly by several processes. In this
Agenda

B-Tree Index

Lock coupling

B_{link}-tree
 - Search
 - Insert

Optimistic lock coupling (OLC)
Agenda

B-Tree Index

Lock coupling

B^{link}-tree
 - Search
 - Insert

Optimistic lock coupling (OLC)
Index: Accelerate data retrieval operations in a database table

– E.g., random lookup, range scan
Index: Accelerate data retrieval operations in a database table
 – E.g., random lookup, range scan
Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan
Index: Accelerate data retrieval operations in a database table
 – E.g., random lookup, range scan
B-tree

Balanced tree data structure

- Data is sorted
- Supports: search, sequential scan, inserts, and deletes
B-tree

Balanced tree data structure

- Data is sorted
- Supports: search, sequential scan, inserts, and deletes

Properties

- Every node contains k to $2k$ keys (except root)
- All leaf nodes are at the same level
- k is typically large; a lookup traverses a small number of levels
B-tree vs. B+ Tree vs. B* Tree

B-tree

B-tree: data pointers stored in all nodes
B-tree vs. B+ Tree vs. B* Tree

B-tree: data pointers stored in all nodes

B+ tree:
- Data pointers stored only in leaf nodes
- The leaf nodes are linked
B-tree vs. B+ Tree vs. B* Tree

B-tree: data pointers stored in all nodes

B+ tree:
- Data pointers stored only in leaf nodes
- The leaf nodes are linked

B* tree is a misused term in B-tree literature
- Typically means a variant of B+ tree in which each node is least 2/3 full
- In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)
Insert Example

Assume $k = 2$ (at most 4 keys per node)

```
insert(9)
A ← read(x)

examine A; get ptr to y
A ← read(y)
insert 9 into A; must split into A, B
put(B, y')
put(A, y)
Add to node $x$ a pointer to node $y'$.
```
Search Example

Assume $k = 2$ (at most 4 keys per node)

```
search(15)
1. $C \leftarrow \text{read}(x)$
2.
3. examine $C$; get ptr to $y$
4.
5.
6.
7.
8.
9.
10. $C \leftarrow \text{read}(y)$
```
Concurrent search and insert can cause problems

Assume $k = 2$ (at most 4 keys per node)

```
search(15)
1. $C \leftarrow \text{read}(x)$
2. 
3. examine $C$; get ptr to $y$
4. 
5. 
6. 
7. 
8. 
9. 
10. $C \leftarrow \text{read}(y)$
11. error: 15 not found!
```

```
insert(9)
1. 
2. 
3. examine $A$; get ptr to $y$
4. $A \leftarrow \text{read}(y)$
5. insert 9 into $A$; must split into $A$, $B$
6. put($B$, $y'$)
7. put($A$, $y$)
8. Add to node $x$ a pointer to node $y'$.
```
Agenda

B-Tree Index

Lock coupling

B^{link}-tree

 – Search

 – Insert

Optimistic lock coupling (OLC)
A node is **unsafe** (wrt. insertion) if it is full (i.e., contains 2k keys)
A node is **unsafe** (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

- Lock parent
- Access parent
- Lock child
- Release parent if child is safe

1. lock node A
2. access node A
3. lock node B
4. unlock node A
5. access node B
6. lock node C
7. unlock node B
8. access node C
9. unlock node C
A node is **unsafe** (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

- Lock parent
- Access parent
- Lock child
- Release parent if child is safe

What if the child is unsafe?

- One solution: split immediately if child is unsafe
Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability bottleneck

Observation: root and upper levels are rarely changed; lock coupling is too conservative
Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability bottleneck

Observation: root and upper levels are rarely changed; lock coupling is too conservative

Concurrency challenge: search may read wrong node due to split
 - Lock coupling solution: guard split using a lock
 - Blink tree solution: allow search to find the right node
Agenda

B-Tree Index

Lock coupling

B^{link}\text{-}tree
 – Search
 – Insert

Optimistic lock coupling (OLC)
Feature 1: **link pointer** to next node at each level → key idea
Feature 1: **link pointer** to next node at each level
Feature 2: **high key** for each node
Blink-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a' and b')

Before split
B_{\text{link}}-\text{Tree: Insert Algorithm}

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a' and b')

Before split

Step 1
B_{\text{link}}-Tree: Insert Algorithm

Insert to leaf if the leaf node is not full

Illustration of node split (node a is split into a' and b')

Before split

Step 1

Step 2
Blink-Tree: Insert Algorithm

Insert to leaf if the leaf node is not full

Illustration of node split (node a is split into a' and b')

Before split Step 1 Step 2 Step 3
B_{link}-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full

Illustration of node split (node <i>a</i> is split into <i>a'</i> and <i>b'</i>)

Q: What if another txn searches a key in <i>b'</i> before step 3 finishes?
B^link-Tree: Search Algorithm

May follow the link pointer to find a key

If search for Key=8

If search for Key=24
Concurrent Search & Insert

Assume $k = 2$ (at most 4 keys per node)
Concurrency problem is solved in B^{link} tree

search(15)
1. $C \leftarrow \text{read}(x)$
2.
3. examine C; get ptr to y
4.
5.
6.
7.
8.
9.
10. $C \leftarrow \text{read}(y)$
11. error: 15 not found!

insert(9)

```
insert(9)
```

```
A \leftarrow \text{read}(x)
```

```
examine $A$; get ptr to $y$
```

```
A \leftarrow \text{read}(y)
```

```
insert 9 into $A$; must split into $A, B$
```

```
put($B, y'$)
```

```
put($A, y$)
```

```
Add to node $x$ a pointer to node $y'$.
```

```
Concurrent Search & Insert

Assume $k = 2$ (at most 4 keys per node)
Concurrency problem is solved in $B^{\text{link}}$ tree

**High key** indicates when to follow link pointer

```
search(15)
1. \(C \leftarrow \text{read}(x) \)
2.
3. examine \(C \); get ptr to \(y \)
4.
5.
6.
7.
8.
9.
10. \(C \leftarrow \text{read}(y) \)
11. \text{error: 15 not found!}
```

```
insert(9)
1. \(A \leftarrow \text{read}(x) \)
2.
3. examine \(A \); get ptr to \(y \)
4.
5. \(A \leftarrow \text{read}(y) \)
6. insert 9 into \(A \); must split into \(A, B \)
7. put((\(B, y' \))
8. put((\(A, y \))
9. Add to node \(x \) a pointer to node \(y' \).
```

15 is found following the link pointer
Concurrent Insert & Insert

Before insert 14

Leaf node split

Insert to parent node

Regular insert process
Concurrent Insert & Insert

Before insert 14 | Leaf node split | Insert to parent node

During an insert, the parent node is split by another transaction
- Follow the link point to find the real parent node
- The transaction holds 3 locks in this scenario
Agenda

B-Tree Index

Lock coupling

$B^{\text{link}}$-tree

- Search
- Insert

Optimistic lock coupling (OLC)
Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

<table>
<thead>
<tr>
<th>Lock bit</th>
<th>Version number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>

1. lock node A  
2. access node A
3. lock node B  
4. unlock node A  
5. access node B
6. lock node C  
7. unlock node B  
8. access node C  
9. unlock node C

A

B

C

1. read version v3  
2. access node A
3. read version v7  
4. validate version v3  
5. access node B
6. read version v5  
7. validate version v7  
8. access node C  
9. validate version v5
Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

<table>
<thead>
<tr>
<th>Lock bit</th>
<th>Version number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>

1. lock node A  
2. access node A

3. lock node B  
4. unlock node A  
5. access node B

6. lock node C  
7. unlock node B  
8. access node C  
9. unlock node C

---

No scalability bottleneck

- No write to shared memory during traversal
- Upon conflict, retry from root
- Performance similar to B^link tree
Evaluation

Figure 3: Scalability on 10-core system for B-tree operations (100M values).

Q/A – Blink Tree

Is Blink-tree optimization used in practice?

Is LSM tree more performance-friendly to concurrent operations?

Actual performance benchmark?

If lock blocks only writers, does a reader see inconsistent data while a writer is modifying the data?

Why only three locks are needed?

Can the same method apply to main-memory database?
Before Next Wednesday

Submit review for