
Xiangyao Yu
10/26/2022

CS 764: Topics in Database Management Systems
Lecture 15: Blink Tree

1

Today’s Paper: B-tree Locking

ACM Trans. Database Syst. 1981 2

Agenda

3

B-Tree Index
Lock coupling
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)

Agenda

4

B-Tree Index
Lock coupling
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)

Index

5

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan

Index

6

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan

Primary
index

Data store

Index

7

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan

Primary
index

Data store

Secondary
index

Index

8

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan

Primary
index

Data store

Secondary
index

B-tree

9

Balanced tree data structure
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes

B-tree

10

Balanced tree data structure
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes

Properties
• Every node contains k to 2k keys (except root)
• All leaf nodes are at the same level
• k is typically large; a lookup traverses a small number of levels

B-tree vs. B+ Tree vs. B* Tree

11

B-tree: data pointers stored in all nodes

10

8 14 16

4 9 13 15 17 19

B-tree

B-tree vs. B+ Tree vs. B* Tree

12

B-tree: data pointers stored in all nodes
B+ tree:

– Data pointers stored only in leaf nodes
– The leaf nodes are linked

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

B-tree vs. B+ Tree vs. B* Tree

13

B-tree: data pointers stored in all nodes
B+ tree:

– Data pointers stored only in leaf nodes
– The leaf nodes are linked

B* tree is a misused term in B-tree literature
– Typically means a variant of B+ tree in which each node is least 2/3 full
– In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

10

8 14 16

4 9 13 15 17 19

B* tree

9 19

19
high key

Insert Example
Assume k = 2 (at most 4 keys per node)

14

Search Example
Assume k = 2 (at most 4 keys per node)

15

Concurrency Challenge
Assume k = 2 (at most 4 keys per node)
Concurrent search and insert can cause
problems

16

Agenda

17

B-Tree Index
Lock coupling
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)

Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

18

Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)
Lock coupling (aka. lock crabbing)

– Lock parent
– Access parent
– Lock child
– Release parent if child is safe

19

Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)
Lock coupling (aka. lock crabbing)

– Lock parent
– Access parent
– Lock child
– Release parent if child is safe

20

What if the child is unsafe?
– One solution: split immediately if

child is unsafe

Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
is too conservative

21

Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
is too conservative

Concurrency challenge: search may read wrong node due to split
– Lock coupling solution: guard split using a lock
– Blink tree solution: allow search to find the right node

22

Agenda

23

B-Tree Index
Lock coupling
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)

Blink-Tree

24

Feature 1: link pointer to next node at each level key idea

Blink-Tree

25

Feature 1: link pointer to next node at each level
Feature 2: high key for each node

key idea

Blink-Tree: Insert Algorithm

26

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split

Blink-Tree: Insert Algorithm

27

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1

Blink-Tree: Insert Algorithm

28

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2

Blink-Tree: Insert Algorithm

29

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2 Step 3

Blink-Tree: Insert Algorithm

30

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Q: What if another txn searches a key in b’ before step 3 finishes?

Before split Step 1 Step 2 Step 3

Blink-Tree: Search Algorithm

31

May follow the link pointer to find a key

5 10 23

root … …

F

If search for Key=8

5 10 23

root … …

F

If search for Key=24

Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree

32

Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
High key indicates when to follow link pointer

33

15 is found following the link pointer

Concurrent Insert & Insert

Regular insert process

34

Before insert 14 Leaf node split

5 10 14 23

12 13 14

root … …

F

A 17 23
B

Insert to parent node

5 10 23

12 13 14

root … …

F

A 17 23
B

5 10 23

root … …

12 13 17 23

… … ……

F

Concurrent Insert & Insert

35

5 10 23

12 13 14

root … …

F

A 17 23
B

5 10 23

root … …

12 13 17 23

… … ……

Before insert 14

F

Leaf node split

5 7 9 10

12 13 14

root … …

F

A 17 23
B

11 14 23

During an insert, the parent node is split by another transaction
– Follow the link point to find the real parent node
– The transaction holds 3 locks in this scenario

Insert to parent node

Agenda

36

B-Tree Index
Lock coupling
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)

Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter

37

Lock bit Version number
0 63

Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter

38

Lock bit Version number
0 63

No scalability bottleneck
– No write to shared

memory during
traversal

– Upon conflict, retry
from root

– Performance similar to
Blink tree

Evaluation

39Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.

Q/A – Blink Tree

40

Is Blink-tree optimization used in practice?
Is LSM tree more performance-friendly to concurrent operations?
Actual performance benchmark?
If lock blocks only writers, does a reader see inconsistent data while a
writer is modifying the data?
Why only three locks are needed?
Can the same method apply to main-memory database?

Before Next Wednesday
Submit review for

– Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-
Memory Databases. ICDE, 2013

41

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

