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Balanced tree data structure 
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes

Properties 
• Every node contains k to 2k keys (except root)
• All leaf nodes are at the same level
• k is typically large; a lookup traverses a small number of levels
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B-tree: data pointers stored in all nodes
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B-tree: data pointers stored in all nodes
B+ tree: 

– Data pointers stored only in leaf nodes
– The leaf nodes are linked
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B-tree vs. B+ Tree vs. B* Tree
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B-tree: data pointers stored in all nodes
B+ tree: 

– Data pointers stored only in leaf nodes
– The leaf nodes are linked

B* tree is a misused term in B-tree literature
– Typically means a variant of B+ tree in which each node is least 2/3 full
– In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)
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Insert Example
Assume k = 2 (at most 4 keys per node)
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Search Example
Assume k = 2 (at most 4 keys per node)
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Concurrency Challenge
Assume k = 2 (at most 4 keys per node)
Concurrent search and insert can cause 
problems
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What if the child is unsafe? 
– One solution: split immediately if 

child is unsafe



Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability 
bottleneck

Observation: root and upper levels are rarely changed; lock coupling 
is too conservative

21



Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability 
bottleneck

Observation: root and upper levels are rarely changed; lock coupling 
is too conservative

Concurrency challenge: search may read wrong node due to split 
– Lock coupling solution: guard split using a lock
– Blink tree solution: allow search to find the right node
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Feature 1: link pointer to next node at each level key idea
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Feature 1: link pointer to next node at each level 
Feature 2: high key for each node

key idea
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Blink-Tree: Insert Algorithm
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Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Q: What if another txn searches a key in b’ before step 3 finishes?

Before split Step 1 Step 2 Step 3



Blink-Tree: Search Algorithm
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May follow the link pointer to find a key 

5     10     23

root … …

F

If search for Key=8

5     10     23

root … …

F

If search for Key=24



Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
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Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
High key indicates when to follow link pointer
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15 is found following the link pointer



Concurrent Insert & Insert

Regular insert process
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Before insert 14 Leaf node split
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Before insert 14
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Leaf node split

5     7     9    10  
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11    14 23  

During an insert, the parent node is split by another transaction 
– Follow the link point to find the real parent node
– The transaction holds 3 locks in this scenario

Insert to parent node
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Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter
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Lock bit Version number
0 63



Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter
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Lock bit Version number
0 63

No scalability bottleneck
– No write to shared 

memory during 
traversal

– Upon conflict, retry 
from root

– Performance similar to
Blink tree



Evaluation

39Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization 
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.



Q/A – Blink Tree
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Is Blink-tree optimization used in practice? 
Is LSM tree more performance-friendly to concurrent operations? 
Actual performance benchmark?
If lock blocks only writers, does a reader see inconsistent data while a
writer is modifying the data? 
Why only three locks are needed? 
Can the same method apply to main-memory database? 



Before Next Wednesday
Submit review for

– Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-
Memory Databases. ICDE, 2013
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

