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CS 764: Topics in Database Management Systems
Lecture 16: Adaptive Radix Tree
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Announcement 
Midterm exam

– All papers before the exam are included
– Guest lectures are not included 
– Nov. 9 (Wednesday) noon–Nov. 11 (Friday) noon, central time
– The exam questions will be posted on Piazza (as a word document)
– Please use Piazza to ask questions privately
– Email your answers to the TA by the deadline 

Suggested ways to submit your solutions: 
– Directly type your solutions in this MS word document 
– Print out the exam and submit a photocopy of your solutions 
– Convert the exam into a pdf file and write your solutions on it 
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Today’s Paper: B-tree Locking

3ICDE 2013



Outline
B-tree vs. Trie
Adaptive Radix Tree

– Adaptive types
– Collapsing inner nodes
– Search and insert operations

Evaluation 
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B+ Tree Revisit
Modern indexes fit in main memory 

Keys are stored in each level of the tree

Must always traverse to the leaf node to check 
existence (e.g., cannot stop at an inner node)
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Trie (aka. digital tree or prefix tree)
Path to leaf node represents key of the 
leaf

Operation complexity is O(k) where k is 
the length of the key 

Keys are most often strings and each 
node contains characters 
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Source: https://en.wikipedia.org/wiki/Radix_tree=
_
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Static Radix Tree
Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 
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Static Radix Tree

Example: 
k = 32 bit keys
Consider the index space consumption to insert one key

Extra space ≈ !" (# of levels) × 2s (node size per level)
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Third byte

Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 
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Static Radix Tree

9

First byte

Second byte

Third byte

Large span 
=> reduced height
=> exponential tree size 

Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 
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Key Idea: Adaptive Radix Tree
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Original Radix Tree
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Key Idea: Adaptive Radix Tree

11

Original Radix Tree

Optimization 1: adaptive node type

Key idea: Use a small node type 
when only a small number of 
children pointers exist 



Key Idea: Adaptive Radix Tree
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Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type⇒



Inner Node Structure
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Node4 and Node16
Node48
Node256

– 256 child pointers indexed with 
partial key byte directly

– (Same as original radix tree)
– Used for 49–256 entries
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Inner Node Structure
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Node4 and Node16
– Store up to 4 (16) partial keys 

and the corresponding pointers
– Each partial key is one byte
– Use SIMD instructions to 

accelerate key search
Node48
Node256
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Inner Node Structure
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Node4 and Node16
Node48

– 256 entries indexed with partial 
key byte directly

– Each entry stores a one-byte index 
to a child pointer array 

– Child pointer array contains 48 
pointers to children nodes

Node256
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Inner Node Structure
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Node4 and Node16
Node48

– 256 entries indexed with partial 
key byte directly

– Each entry stores a one-byte index 
to a child pointer array 

– Child pointer array contains 48 
pointers to children nodes

Node256 Discussion Question 
Q1: Is Node48 more space efficient compared to 
Node4/16 layout? 
Q2: What is the key advantage of Node48 layout?
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Collapsing Inner Node
Lazy expansion: remove path to 
single leaf

– Inner nodes created only required to 
distinguish at least two leaf nodes 

– In the example, root can directly point 
to leaf FOO, eliminating the two inner 
nodes

– Requires the key to be stored at the 
leaf or in the database 
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Collapsing Inner Node
Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child
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Collapsing Inner Node
Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 
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Collapsing Inner Node
Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 

– Optimistic: child node stores only the 
length of compressed partial key
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Collapsing Inner Node
Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 

– Optimistic: child node stores only the 
length of compressed partial key

– Hybrid: use constant vector to store 
partial key, switch to optimistic 
approach if the vector overflows
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Search Algorithm
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B, F

“OO”, D, L   

Example: search for FOOD
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Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have 
at least 52 bytes budget remain
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Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have 
at least 52 bytes budget remain
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Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have 
at least 52 bytes budget remain
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Node4: b(n) ≤ 52 * 2 – 52 = 52
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Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have 
at least 52 bytes budget remain

26

Node4: b(n) ≤ 52 * 2 – 52 = 52
Node16: b(n) ≤ 52 * 5 – 160 = 100
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Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have 
at least 52 bytes budget remain
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Node4: b(n) ≤ 52 * 2 – 52 = 52
Node16: b(n) ≤ 52 * 5 – 160 = 100
Node48: b(n) ≤ 52 * 17 – 656 = 228
Node256: b(n) ≤ 52 * 49 – 2064 = 484 
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Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?
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Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?

Binary comparable keys 
– For finite and totally ordered domains, always possible to transform values 

to binary-comparable keys 
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Evaluation—Single-Threaded Lookup
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Evaluation—Single-Threaded Insert
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Evaluation—Single-Threaded Insert
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Evaluation – More Baselines

33* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018
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Evaluation – Memory Usage

34* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018
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Q/A – Adaptive Radix Tree
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ART performance on disk? 
Tries used in real database systems? 
Can ART leverage multicore hardware?
Why sort keys in Node4 and Node16? =
-



Next Lecture
C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting 
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead 
Logging. ACM Transactions on Database Systems, 1992

– Skip Section 1 and everything after (including) Section 8
– May also skip Section 2
– About 25–30 pages to read 
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