WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 16: Adaptive Radix Tree

Xiangyao Yu
10/31/2022

Announcement

Midterm exam
[-3— All papers before the exam are included
— Guest lectures are not included
—> — Nov. 9 (Wednesday) nhoon—-Nov. 11 (Friday) noon, central time
— The exam questions will be posted on Piazza (as a word document)
— Please use Piazza to ask questions privately
— Email your answers to the TA by the deadline

Suggested ways to submit your solutions:
— Directly type your solutions in this MS word document
— Print out the exam and submit a photocopy of your solutions
— Convert the exam into a pdf file and write your solutions on it

Today’s Paper: B-tree Locking

The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases

Viktor Leis, Alfons Kemper, Thomas Neumann

Fakultdt fiir Informatik
Technische Universitit Miinchen
Boltzmannstrae 3, D-85748 Garching
<lastname>@in.tum.de

Abstract—Main memory capacities have grown up to a point
where most databases fit into RAM. For main-memory database
systems, index structure performance is a critical bottleneck.
Traditional in-memory data structures like balanced binary
search trees are not efficient on modern hardware, because they
do not optimally utilize on-CPU caches. Hash tables, also often
used for main-memory indexes, are fast but only support point
queries.

To overcome these shortcomings, we present ART, an adaptive
radix tree (trie) for efficient indexing in main memory. Its lookup
performance surpasses highly tuned, read-only search trees, while
supporting very efficient insertions and deletions as well. At the
same time, ART is very space efficient and solves the problem
of excessive worst-case space consumption, which plagues most
radix trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though ART’s performance
is comparable to hash tables, it maintains the data in sorted
order, which enables additional operations like range scan and
prefix lookup.

I. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hard land: and are therefore much faster. Our
system HyPer, for pl pil ions to hi

code and gets rid of buffer management, locking, and latching

digit 1
A
digit 2
R
digit 3
D, T Y E il
leaf nodes

Fig. 1. Adaptively sized nodes in our radix tree.

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).
These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)

overhead. For OLTP workloads, the Iting plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B™-tree
variants like the cache sensitive B*-tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B -trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,

ICDE 2013

1 which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(logn) access
time, hash tables have expected O(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.

Outline

B-tree vs. Trie

Adaptive Radix Tree
— Adaptive types
— Collapsing inner nodes
— Search and insert operations

Evaluation

B+ Tree Revisit

B+ tree

Modern indexes fit in main memory

o] 10 |e

Keys-are-stored-ireachlevel-of-thetree o| 8
/
AN

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

Trie (aka. digital tree or prefix tree)

Path to leaf node represents key of the

leaf

Operation complexity is O(k) where kis

the length of the key

Keys are most often strings and each

node contains characters

l? rubicundui/”,f ,
asi|

1l romane
2 romanus
3 romulus
4 rubens
5 ruber

6 rubicon

@ Iulus‘ , , °

E #[ir-‘_] c>nL:lndus
® ®@ ® 0 O

Source: https://en.wikipedia.org/wiki/Radix tree

Static Radix Tree

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array

of 25 pointers
=

(1 dype)

g
First byte (,) 2 F"'s.
A AW A AV

Second byte

R
/ ! ! \J[Jllllll%

Third byte (

Static Radix Tree

Span (S): The number of First byte ‘/[7 7 7 v\ {
bits within the key used to Second byte |)
determine the next child | L NS
Third byte] ()
/ ' i A T T T A

An inner node is an array
of 28 pointers

Example:

k=32 Dbit keys

Consider the index space consumption to insert one key

Extra space = m (# of levels) x 2% (node size per level)
T emme—— . X —~—

Static Radix Tree

Span (s): The number of Firstoyte: (]

bits within the key used to Second byte

()
determine the next child | — Ly N T
Third byte] ()
/ ' ' | A A A A A A A ¥

An inner node is an array
of 28 pointers

.——.]

]

I
tree height

Large span
=> reduced height

32MB 128MB 512MB 2GB 8GB 32GB

=> eXponentiaI tree size space consumption (log scale)

Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.

Key Idea: Adaptive Radix Tree

s

/\

7 7 1
I 4 g /

)

Original Radix Tree

Key Idea: Adaptive Radix Tree

/\

7 7 1
—

)

Original Radix Tree

N,

Optimization 1: adaptive node type

Key idea: Use a small node type
when only a small number of
children pointers exist

11

Key Idea: Adaptive Radix Tree

/\

7 7 1
—

)

Original Radix Tree

N,

— Optimization 1: adaptive node type

/

N,

Optimization 2: collapsing inner nodes
12

Inner Node Structure

Node4 and Node16 _Noge256 i i \
0 1 2 3 4 5 6 255
Node256
— 256 child pointers indexed with A A A
partial key byte directly \
— (Same as original radix tree)) L\/R_B

— Used for 49—-256 entries

ket T 1722

13

Inner Node Structure
Node4d key chi

Node4 and Node16 ——
— Store up to 4 (16) partial keys L Lﬂ_z i 256
2

and the corresponding pointers
— Each partial key is one byte %2 b ¢

— Use SIMD instructions to Node1e .
accelerate key search -, — : —
Node48 b by e . :
AN £\

Node256 -"7\." 3 2% brke
ke [[A]

—

14

Inner Node Structure

Node4 and Node16 Nodeds g ndes child pointer

‘D 4. 2 .3
Node48

— 256 entries indexed with partial T Reanet
key byte directly

— Each entry stores a one-byte index
to a child pointer array e (6 4 pres

— Child pointer array contains 48 —_ —— ~
pointers to children nodes G X ! !S ‘ j
Node256

15

Inner Node Structure

Node4 and Node16 Noded8 g ndex child pointer
‘D 1. 23 :
Node48 T L. -
mntries iIndexed with partial B e '
key byte directly Q Lt ceg oy,

— Each entry stores a one-byte index * ‘El =

to a child pointer array) '
— Child pointer array contains 48 ﬂ prv = é 5 . (ef phvs.
pointers to children nodes L \ J _) @

Node256

Discussion Question

Q1: Is Node48 more space efficient compared to
Node4/16 layout?

Q2: What is the key advantage of Node48 layout?

16

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

— Inner nodes created only required to
distinguish at least two leaf nodes

— In the example, root can directly point
to leaf FOO, eliminating the two inner
nodes

— Requires the key to be stored at the
leaf or in the database

.
...................
......
........................
........
. .

~'path compression(~ |
‘e merge one-way node K .
g into child node ~ “wpt’ : Iazy. .
------------------------- A & eXpanSIOn ‘:
remove path

to single leaf
R Z Qe '

Fig. 6. Illustration of lazy expansion and path compression.

17

Collapsing Inner Node

Lazy expansion: remove path to R
single leaf i compression s APy O
SNl T lazy .
Path compression: merge one-way e 9] [% expansion |
node into child node AR o
— Removes all inner nodes that have R Z O e A,
only a single child

Fig. 6. [Illustration of lazy expansion and path compression.

18

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

— Removes all inner nodes that have
only a single child

— Pessimistic: child node stores the
compressed partial key

e
e
L
.....

Fig. 6.

.

n "

" path compressuon
v merge one-way node %
' into child node T .. Iazy. E
...................... A : O eXpanSIO :
J remove path .
to single leaf
R V4 | I 2

[llustration of lazy expansion and path compression.

19

Collapsing Inner Node LR

Lazy expansion: remove path to R
Sing|e leaf T B F --------------------
3 i & G5
Path compression: merge one-way : [% expansion
node into child node
— Removes all inner nodes that have 9 ____________________
only a single child

— Pessimistic: child node stores the
COmpreSSGd partial key Fig. 6. Illustration of lazy expansion and path compression.

— Optimistic: child node stores only the
length of compressed partial key

20

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

— Removes all inner nodes that have
only a single child

— Pessimistic: child node stores the
compressed partial key

— Optimistic: child node stores only the
length of compressed partial key

— Hybrid: use constant vector to store
partial key, switch to optimistic
approach if the vector overflows

e

s
t‘-'

.

.
*ey,
.
.....

Fig. 6.

~'path compression(” |
o merge one-way node K pg "
into child node et ' Iazy.
....................... A : O expanS|On ;
. remove path .

% @ to single leaf A

[llustration of lazy expansion and path compression.

21

o 0 N Y B W e

— —
— O

Search Algorithm

search (node, key, depth)

if node==NULL
return NULL
if isLeaf (node)
if leafMatches (node, key, depth)
return node
return NULL
if checkPrefix (node, key,depth) !=node.prefixLen
return NULL
depth=depth+node.prefixLen
next=findChild (node, key[depth])
return search(next, key, depth+l)

Fig. 7. Search algorithm.

B,

uc)()u, [),I_

Example: search for FOOD

22

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

23

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

T2 , — T
b(n) = ::1:z - isLeaf(n)
(ZiEC(n) b(?’)) o S(TL), else. !] / x
L"’O»\Q
= /17| /1
et

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

/ \
b(n) & isLeaf(n)
n) = _
(Sicem b@) = s(n), else. 73
Node4: b(n) <52 * 2 — 52 = 52 avd l 4
-—-" —— ——
Type Children Space (bytes)
Node4 2-4 16+4+4+4-8 =52
Nodelé6 5-16 16 +16 + 16 - 8 = 160
Node48 17-48 | 16 + 256 + 48 - 8 = 656
Node256 49-256 16 4+ 256 - 8 = 2064

Space Consumption

ART requires at most 52 bytes of memory to index a key
— Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

b(n) & isLeaf(n)

= (ZiEC(H) b(z)) — s(n), else. VN

/
Node4: b(n) =52 *2 — 52 = 52 / \/\ \ /\
Node16: b(n) <—§2—i_~1—6@ B 10 Type Children Space (bytes)
Node4 2-4 164+4+4+4.-8 = 52
Nodelé6 5-16 16 +16 + 16 - 8 = 160
Node438 17-48 | 16 4+ 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

26

Space Consumption

ART requires at most 52 gxtes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

; & isLeaf(n)
)= {(Zi@(n) b(z)) — s(n), else.

Node4: b(n) =52 *2 — 52 = 52
Node16:b(n) =52 *5-160 =100
Node48: b(n) =52 * 17 — 656 = 228
Node256: b(n) =52 * 49 — 2064 = 484

[A
ravAtd 4
Type Children Space (bytes)
Node4 2-4 16 +44+4-8 =52
Nodelb6 5-16 16 +16 + 16 - 8 = 160
Node438 17-48 | 16 4+ 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

27

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

28

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

Binary comparable keys

— For finite and totally ordered domains, always possible to transform values
to binary-comparable keys

29

Evaluation—Single-Threaded Lookup

M lookups/second

65K
90 = - dense
sparse
60 =
30 = I I
el
1 T T T T T T

ART GPT RB CSB kary FAST HT

M lookups/second

16M

20 =
.dense

15 = sparse
10 =
) I I I
ol .

T T | T T

T T
ART GPT RB CSB kary FAST HT

M lookups/second

256M
10.0 =
. dense

1.5 = sparse
5.0

2.5 = I I

0.0 = .

T I I |

1
ART

Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

RB kary FAST HT
(GPT and CSB crashed)

30

Evaluation—Single-Threaded Insert

15 =
g . dense
O sparse
810 =
8
@
g 5-
E I

0 -

ART ART GPT B CSB

(bulk) (bulk)

Fig. 14. Insertion of 16M keys into an empty index structure.

31

Evaluation—Single-Threaded Insert

15 =
g . dense
O sparse
810 =
%)
g =
[}
g 5-

0 = =]
| T | 1 T |
ART ART GPT RB CSB HT

(bulk) (bulk)

Fig. 14. Insertion of 16M keys into an empty index structure.

20 =
T ART
3
o 15 =
&
e
S 10 = HT
©
8 5=
o FAST +A
= .- —re A A ;

T T 1 | T
0% 25% 50% 75% 100%
update percentage
Fig. 15. Mix of lookups, insertions, and deletions (16M keys).

32

Evaluation — More Baselines

[Bwlree Il OpenBwTree WM Skiplist

[MassTree
«

[+~]1 B+Tree B ART
-T

- m—
140 70 = 70
B 5 o 360 o B 260}
o 120 b & 8 < -t $
2100 g 250} < 250
(@) (@)
g -1 | IR . §4O §40-
5 60| 330/ g3
z L i
g) 40! 2. g>20- g520»
o 2 10l £ 10¢
£ 20 = =
0 0 0
Read Read Read Read Scan
Only Only Update Insert Only Only Update Insert Only Only Update Insert
wnpllle - —
(a) Mono-Int Keys (b) Rand-Int Keys (c) Email Keys

Figure 14: In-Memory Index Comparison (Multi-Threaded) — 20 worker threads. All worker threads are pinned to NUMA node 0.

* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018 33

Evaluation — Memory Usage

(b) Multi-Threaded — Read/Update

* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

8 . : :
__p| | OpenBwTree B+Tree
éﬁ 5| | BB Skiplist @@ ART 8
>~4 ('; <
g)
2o
q L
0 Mono Int Rand Int Email Key s

34

Q/A — Adaptive Radix Tree

ART performance on diskj

“Tries used in real database systems?

Can ART leverage multicore hardware?
Why sort keys in Node4 and Node167?

35

Next Lecture

C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 1992

— Skip Section 1 and everything after (including) Section 8

— May also skip Section 2

— About 25-30 pages to read

36

