
Xiangyao Yu
10/31/2022

CS 764: Topics in Database Management Systems
Lecture 16: Adaptive Radix Tree

1

Announcement
Midterm exam

– All papers before the exam are included
– Guest lectures are not included
– Nov. 9 (Wednesday) noon–Nov. 11 (Friday) noon, central time
– The exam questions will be posted on Piazza (as a word document)
– Please use Piazza to ask questions privately
– Email your answers to the TA by the deadline

Suggested ways to submit your solutions:
– Directly type your solutions in this MS word document
– Print out the exam and submit a photocopy of your solutions
– Convert the exam into a pdf file and write your solutions on it

2

→

-0

Today’s Paper: B-tree Locking

3ICDE 2013

Outline
B-tree vs. Trie
Adaptive Radix Tree

– Adaptive types
– Collapsing inner nodes
– Search and insert operations

Evaluation

4

B+ Tree Revisit
Modern indexes fit in main memory

Keys are stored in each level of the tree

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

5

10

8 14 16

4 9 13 15 17 19

B+ tree

-

Trie (aka. digital tree or prefix tree)
Path to leaf node represents key of the
leaf

Operation complexity is O(k) where k is
the length of the key

Keys are most often strings and each
node contains characters

6

Source: https://en.wikipedia.org/wiki/Radix_tree=
_

•
1¥

Static Radix Tree
Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

7

First byte

Second byte

Third byte

Abcd
28ptvs.

-

- • *

F-

Static Radix Tree

Example:
k = 32 bit keys
Consider the index space consumption to insert one key

Extra space ≈ !" (# of levels) × 2s (node size per level)
8

First byte

Second byte

Third byte

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

F-

---÷-

Static Radix Tree

9

First byte

Second byte

Third byte

Large span
=> reduced height
=> exponential tree size

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

-

#I go.LI

Key Idea: Adaptive Radix Tree

10

Original Radix Tree

?⃝

Key Idea: Adaptive Radix Tree

11

Original Radix Tree

Optimization 1: adaptive node type

Key idea: Use a small node type
when only a small number of
children pointers exist

Key Idea: Adaptive Radix Tree

12
Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type⇒

Inner Node Structure

13

Node4 and Node16
Node48
Node256

– 256 child pointers indexed with
partial key byte directly

– (Same as original radix tree)
– Used for 49–256 entries

⇒

/÷
key E#%r

Inner Node Structure

14

Node4 and Node16
– Store up to 4 (16) partial keys

and the corresponding pointers
– Each partial key is one byte
– Use SIMD instructions to

accelerate key search
Node48
Node256

-

;¥
-

↑
" %ñ

-

=
l byte

1- 3 . l28b

key 11-14%-7

Inner Node Structure

15

Node4 and Node16
Node48

– 256 entries indexed with partial
key byte directly

– Each entry stores a one-byte index
to a child pointer array

– Child pointer array contains 48
pointers to children nodes

Node256
☐¥¥÷:;÷

Inner Node Structure

16

Node4 and Node16
Node48

– 256 entries indexed with partial
key byte directly

– Each entry stores a one-byte index
to a child pointer array

– Child pointer array contains 48
pointers to children nodes

Node256 Discussion Question
Q1: Is Node48 more space efficient compared to
Node4/16 layout?
Q2: What is the key advantage of Node48 layout?

"'¥÷% , •

-•

*# ②

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

– Inner nodes created only required to
distinguish at least two leaf nodes

– In the example, root can directly point
to leaf FOO, eliminating the two inner
nodes

– Requires the key to be stored at the
leaf or in the database

17

FARI.EE?
V

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

18

-

-

In

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

19

BE↑fF--

*

→
.AT#-

0
-

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

– Optimistic: child node stores only the
length of compressed partial key

20

BESI
byte .

↳

↓
F-

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

– Optimistic: child node stores only the
length of compressed partial key

– Hybrid: use constant vector to store
partial key, switch to optimistic
approach if the vector overflows

21

Search Algorithm

22

B, F

“OO”, D, L

Example: search for FOOD

2.*
,

→

FEED_

Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

23

Its

Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

24

-

¥
↳byte.

Thus b←☒7

5*1*5252

Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

25

Node4: b(n) ≤ 52 * 2 – 52 = 52

=L

-58-a-

--

Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

26

Node4: b(n) ≤ 52 * 2 – 52 = 52
Node16: b(n) ≤ 52 * 5 – 160 = 100

g- -0
&

Space Consumption
ART requires at most 52 bytes of memory to index a key

– Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

27

Node4: b(n) ≤ 52 * 2 – 52 = 52
Node16: b(n) ≤ 52 * 5 – 160 = 100
Node48: b(n) ≤ 52 * 17 – 656 = 228
Node256: b(n) ≤ 52 * 49 – 2064 = 484

#

Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?

28

Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?

Binary comparable keys
– For finite and totally ordered domains, always possible to transform values

to binary-comparable keys

29

Evaluation—Single-Threaded Lookup

30

Evaluation—Single-Threaded Insert

31

Evaluation—Single-Threaded Insert

32

Evaluation – More Baselines

33* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

-

←

-

- -

•

-3
£

Evaluation – Memory Usage

34* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

I
_←

Q/A – Adaptive Radix Tree

35

ART performance on disk?
Tries used in real database systems?
Can ART leverage multicore hardware?
Why sort keys in Node4 and Node16? =
-

Next Lecture
C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 1992

– Skip Section 1 and everything after (including) Section 8
– May also skip Section 2
– About 25–30 pages to read

36

