
Xiangyao Yu
11/2/2022

CS 764: Topics in Database Management Systems
Lecture 17: ARIES

1

Today’s Paper: ARIES

ACM Trans. Database Syst. 1992.
2

Agenda

3

Durability
Write ahead logging

– Force vs. No Force
– Steal vs. No Steal

ARIES logging

Durability

4

Durability: The database must recover to a valid state no matter
when a crash occurs
• Committed transactions should persist
• Uncommitted transactions should roll back

Durability

5

Durability: The database must recover to a valid state no matter
when a crash occurs
• Committed transactions should persist
• Uncommitted transactions should roll back

Desired Behavior after system restarts
• T1, T2 should persist
• T3, T4 should be aborted

T1
T2
T3
T4

crash
CB

CB

B

B

a

:
→ time

Write-Ahead Logging (WAL)

6

Before a transaction commits, its modifications must persist
Before writing dirty data to disk, rollback information must persist

Processor

Disk
DRAM

Page

Log

-
-
=

DM

Write-Ahead Logging (WAL)

7

Before a transaction commits, its modifications must persist
Before writing dirty data to disk, rollback information must persist
Write-ahead logging: changes are written to the log before updating the
database tables

– Writing to log incurs sequential IO
Processor

Disk
DRAM

Page

Log

÷

Buffer Management Policy

8

No Steal: Dirty pages stay in DRAM until the transaction commits
the

Buffer Management Policy

9

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
• Advantage: other transactions can use the buffer slot in DRAM
• Challenge: system crashes after flushing dirty pages but before the

transaction commits
=> Dirty data on disk

• Solution: UNDO logging before each update

-

Buffer Management Policy

10

Force: All dirty pages must be flushed when the transaction commits

Buffer Management Policy

11

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
• Advantage: reduce # random IO
• Challenge: system crashes after the transaction commits but before the dirty

pages are flushed
=> missing updates from committed transactions

• Solution: REDO logging before each update
F- __

Buffer Management Policy

12

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

#
-

TE .
←

Buffer Management Policy

13

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB

-

↑

Buffer Management Policy

14

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB Main memory DB

F-

Buffer Management Policy

15

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB Main memory DB

Non-volatile memory DBQ

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page
Commit: Write COMMIT to log
Recovery:

– Forward scan of entire log: redo all
records

– Backward scan of entire log: undo
uncommitted transactions

16

Data structures
Log entry

– (LSN), txnID, pageID, data

Data page
– Tuple data⇒ ⇒E-

-

= smsFÉb
disk

A-¥

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page
Commit: Write COMMIT to log
Recovery:

– Forward scan of entire log: redo all
records; keep a table for active
transactions

– Backward scan of entire log: undo
uncommitted transactions

17

Data structures

(Active) Transaction Table
– TransID

Log entry
– (LSN), txnID, pageID, data

Data page
– Tuple data

E- • ⇒ *

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

18

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log
– Need to undo only records of uncommitted transactions

19

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log
– Need to undo only records of uncommitted transactions

Lack of checkpointing
– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in data pages

20

Optimize REDO Process
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in

the data page

21

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– TransID

Data page
– Tuple data

=

!E

Optimize REDO Process
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in

the data page

Solution: add a version number to each page
– pageLSN: LSN of the log record that describes

the latest update to the page.
– REDO scan: Apply REDO only if record.LSN >

page.pageLSN
– Write: update pageLSN (for the buffered page) for

each write

22

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– TransID

Data page
– Tuple data
– pageLSN
Ifs

=

Optimize UNDO Process
Inefficiency in the UNDO process

– Unnecessary to scan the entire log
– Need to undo only records of uncommitted

transactions

23

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– transID

Data page
– tuple data
– pageLSN

-

Optimize UNDO Process
Inefficiency in the UNDO process

– Unnecessary to scan the entire log
– Need to undo only records of uncommitted

transactions

Solution: link records from the same transaction
– prevLSN: preceding log record written by the same

transaction
– lastLSN: LSN of the last log record written by the

transaction
– UNDO scan: Follow lastLSN and prevLSN to undo

records
– REDO scan: update lastLSN in Transaction Table

based on the last update of the transaction
24

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSNE-

Checkpoint
Lack of checkpointing

– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in

data pages

25

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Checkpoint
Lack of checkpointing

– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in

data pages

Solution: Maintain a dirty page table
– pageID: ID of the dirty page
– recLSN: LSN of the first log record since when the

page is dirty
– Fuzzy Checkpoint: log DPT and TT

asynchronously
– REDO scan: start from the smallest LSN in DP

26

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Dirty Page Table
– pageID
– recLSN

-

-1A - a

•

Compensation Log Record (CLR)

The action of applying UNDO leads to a CLR
– In undo scan, do not reapply UNDO if CLR exists
– UndoNxtLSN: LSN of the next record to be

processed during undo scan

27

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN
– UndoNxtLSN

(Active) Transaction Table
– transID
– lastLSN
– UndoNxtLSN

Data page
– tuple data
– pageLSN

Dirty Page Table
– pageID
– recLSN

go.si Is

ARIES – Big Picture

28

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

ARIES – Big Picture

29

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint
– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

– REDO phase: redo transactions whose
effects may not be persistent before the
crash

– UNDO phase: undo transactions that did
not commit before the crash

ARIES – Big Picture

30

Oldest log rec. of
active transactions
at crash

Smallest recLSN in
dirty page table
after Analysis

Last chkpt

CRASH
A R U

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint
– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

– REDO phase: redo transactions whose
effects may not be persistent before the
crash

– UNDO phase: undo transactions that did
not commit before the crash

Crash Recovery – Analysis Phase

31

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

Crash Recovery – Analysis Phase

32

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
– If ‘update’ or ‘CLR’: insert to transaction table if not exists
– If ‘end’: delete from transaction table
for

Crash Recovery – Analysis Phase

33

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
– If ‘update’ or ‘CLR’: insert to transaction table if not exists
– If ‘end’: delete from transaction table

(update dirty page table) For each log record:
– If ‘update’ or ‘CLR’: insert to dirty page table if not exists (PageID, RecLSN)F-

Analysis Phase – Example

34

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN

PageID RecLSN

Analysis Phase – Example

35

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10

PageID RecLSN
P5 10

→
_

00

☐

Analysis Phase – Example

36

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

- :

Analysis Phase – Example

37

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

=-
→

→

Analysis Phase – Example

38

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 20

PageID RecLSN
P5 10
P3 20
P1 50

:

Analysis Phase – Example

39

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

→ 0

-

"

Crash Recovery – REDO Phase

40

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Crash Recovery – REDO Phase

41

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table
– Before this LSN, all redo records have been reflected in data pages on disk
In_-

Crash Recovery – REDO Phase

42

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table
– Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

– The page is not in dirty page table (DPT)
– The page is in DPT but redo_record.LSN < DPT[page].recLSN
– After fetching the data page, redo_record.LSN ≤ page.page_LSNI -__=g← : I

REDO Phase – Example

43

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

No need to update

Write already
reflected on disk

1- -
•

•

-

•

REDO Phase – Example

44

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P3 in
buffer pool

No need to flush
P3 now

F-

IF
-
•

REDO Phase – Example

45

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

No need to update

Write already
reflected on disk

-

→

REDO Phase – Example

46

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P1 in
buffer pool

No need to flush
P1 now

-

_

=

REDO Phase – Example

47

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P5 in
buffer pool

No need to flush
P5 now

-

→

Crash Recovery – UNDO Phase

48

Rollback uncommitted transactions

Crash Recovery – UNDO Phase

49

Rollback uncommitted transactions

Repeat until transaction table is empty:
– Choose largest LastLSN among transactions in the transaction table
– If the log record is an ‘update’: Undo the update, write a CLR, add

record.prevLSN to transaction table
– If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table
– If prevLSN and UpdoNxtLSN are NULL, remove the transaction from

transaction table

-

,

UNDO Phase – Example

50

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 608

UNDO Phase – Example

51

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 70 60 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)(

-

→ -

UNDO Phase – Example

52

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 80 50 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)

9

UNDO Phase – Example

53

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 80 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
f-

UNDO Phase – Example

54

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 70 90 20 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)

0

-

UNDO Phase – Example

55

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 90 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)
95 T2 End
-

Crash During Restart – Example

56

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

CLR: Undo T2 LSN 20, T2 end90

No need to undo LSN 60 and
LSN 50 again due to the CLRs
created in the previous restart

Can created a checkpoint to
reduce the cost of future restart

¥-→!

Q/A – ARIES

57

Alternatives to logging to provide atomicity and durability?
Logging and recovery in modern database systems?
Challenges in ARIES for modern memory hierarchy?
ARIES with disaggregated storage?
How does the buffer manager obey write ahead logging?
Does the redo order matter?
How much does time/space overhead of logging affect the system?
E-

Next Week
Next Monday: Exam review

– Lecture given by TA
– Exam questions in previous years available on course website

Next Wednesday–Friday: Take-home exam

58

