WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 17: ARIES

Xiangyao Yu
11/2/2022

Today’s Paper: ARIES

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARIES (Algorithm for Recovery
and Isolation Exploiting Semantics), which supports partial roilbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before performing the rolibacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks. By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, selective and deferred restart, fuzzy image copies, media recovery, and high
concurrency lock modes (e.g., increment /decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, page-oriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL. We compare ARIES to the WAL-based recovery methods of

ACM Trans. Database Syst. 1992.

Agenda

Durability

Write ahead logging
— Force vs. No Force
— Steal vs. No Steal

ARIES logging

Durabillity

Durability: The database must recover to a valid state no matter
when a crash occurs

« Committed transactions should persist
 Uncommitted transactions should roll back

Durabillity

Durability: The database must recover to a valid state no matter
when a crash occurs

« Committed transactions should persist
« Uncommitted transactions should roll back

1
Desired Behavior after system restarts T1 '?_,C)

» T1, T2 should persist T2, +—F |
* T3, T4 should be aborted T3 >
T4 B

Write-Ahead Logging (WAL)

Before a transaction commits, its modifications must persist

Before writing dirty data to disk, rollback information must persist

Processor

Page t)
N—

DRAM

—
_—

Disk
Log

Write-Ahead Logging (WAL)

Before a_transaction commits, its modifications must persist
Before writing dirty data to disk,_rollback information must persist

Write-ahead logging: changes are written to the log before updating the
database tables
— Writing to log incurs sequential 10 _

Processor

Page
DRAM

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits
- S L

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
« Advantage: other transactions can use the buffer slot in DRAM
* _Challenge: system crashes after flushing dirty pages but before the
transaction commits

=> Dirty data on disk
« Solution: UNDO logging before each update

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

10

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
« Advantage: reduce # random 10

« Challenge: system crashes after the transaction commits but before the dirty
pages are flushed

=> missing updates from committed transactions
» Solution: REDO logging before each update

m

11

Buffer Management Policy

Steal No Steal
-../_f——f i —
Force UNDO only No REDO nor
UNDO
No Force | REDO and REDO only
"UNDO logging
(ARIES) A

]

12

Buffer Management Policy

No Force | REDO and

Steal No Steal
Force UNDO only No REDO nor
UNDO

UNDO logging

(ARIES)

REDO only

Disk-TSsed DB

13

Buffer Management Policy

No Force | REDO and
UNDO logging

(ARIES)

Disk-based DB

Steal No Steal
Force UNDO only No REDO nor
UNDO

'REDO only

Main memory DB

14

Buffer Management Policy

No Steal
A

UNDO only Ao REDO nor
\UNDO

No Force | REDO and REDO only
UNDO logging
(ARIES)

Disk-based DB Main memory DB

Force

Non-volatile memory DB

15

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log; Data structures

‘Logentry
update the page A4 - (LsN), taniD, pagelD, data
Commit: Write COMMIT to log Datapaqe
R ‘ N @ i — Tuple data |

ecovery: Tevpledaa

— Forward scan of entire log; redo all

records okl
— Backward scan of entire log: undo ~ Sm¢ ?
_uncommitted transactions é Mem
. b
=\
- 2

16

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log
—r e
Recovery:

— Forward scan of entire log: redo all

records; keep a table for active
transactions

— Backward scan of entire log: undo
. n ”
uncommitted transactions

Data structures

: Log entry ;
: — (LSN), txnID, pagelD, data

__

 Data page
' — Tuple data

__

' (Active) Transaction Table

— TransID

17

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

18

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

19

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

Lack of checkpointing
— Unnecessary to start from the beginning of log
— Start with the first log record that is not reflected in data pages

20

Optimize REDO Process

Inefficiency in the REDO process _ Datastructures

— Unnecessary to redo all records ELog fnt(rls_/SN) 0D, pagelD, data i

— Need to redo only records that are not reflected in~ \-....-___2______...C....l____.
the data page : Data page

— Tuple data

' (Active) Transaction Table
| — TransID

Pel0

21

Optimize REDO Process

Inefficiency in the REDO process
— Unnecessary to redo all records

— Need to redo only records that are not reflected in
the data page

Solution: add a version number to each page

— pageLSN: LSN of the log record that describes
the latest update to the page.

— REDO scan: Apply REDO only if record. LSN >
_page.pageLSN

— Write: update pageLSN (for the buffered page) for
each write

Data structures

‘Logentry
' — (LSN), txnID, pagelD, data

' Data page
' — Tuple data

! — pageLSN :
e T T e e ___21

' (Active) Transaction Table
| — TransID

22

Optimize UNDO Process

Inefficiency in the UNDO process _Datastructures
— Unnecessary to scan the entire log - Log f”t(rlL’SN) D, cacelD data
— Need to undo only records of uncommitted ; P PR §
transactions I
' Data page
' — tuple data
— pagelLSN

| (Active) Transaction Table
— transiD

23

Optimize UNDO Process

Inefficiency in the UNDO process F____E?_qt_a}_i_t_r_ggt_t{[_e_g ___________
— Unnecessary to scan the entire log Log ent §
: ! — xnlID, pagelD, data :
— Need to undo only records of uncommitted ;J_iirsev%q-r ;
transactions SR ‘L—F"
' Datapage @@
Solution: link records from the same transaction ~ tuple data .
— prevLSN: preceding log record written by the same o pagelsN
transaction ' (Active) Transaction Table
— lastLSN: LSN of the last log record written by the | — transiD
transaction o cJass
— UNDO scan: Follow lastLSN and prevLSN to undo 7
records

— REDO scan: update lastLSN in Transaction Table
based on the last update of the transaction
24

Checkpoint

Lack of checkpointing Data structures

__

— Unnecessary to start from the beginning of log Log fnt(rsL/SN) e
— Start with the first log record that is not reflected in | _ ;o sN PRSE i

data pages

' Data page
| — tuple data
— pagelLSN

 (Active) Transaction Table
— transl|D
— lastLSN

25

Checkpoint

Lack of checkpointing ~ Data structures
— Unnecessary to start from the beginning of log - Log oY riD. sacelD. data
— Start with the first log record that is not reflected in | _ é)revl_)’SIzl(n pagets, BaE g
data pages
'Datapage @~

Solution: Maintain a dirty page table .~ tuple data

~ pagelD: ID of the dirty page B T

—recLSN: LSN of the first log record since when the K’(Ké{{v'éj'ﬁé’ﬁéé&t’ib’r}'ﬂs{é"'a"""g

page is dirty i };as?fgl)\l
- Fuzzy ChGCkPOint: Iog DPT and TT T
asynchronously ‘Dirty Page Table l

~ _ : — pagelD
REDO scan: start from the smallest LSN in DP =N

] . .

Compensation Log Record (CLR)

1 B;fore Fallure r2' Data structures
Log o= < ; ‘Logentry
‘\\ 2 > 5 — (LSN), txnID, pagelD, data

_________ | — prevLSN
__ —> ' Data page
i — tuple data
— pagelLSN
I’ is the Compensation Log Record for I ':::
I’ points to the predecessor, if any, of I . (Active) Transaction Table
, — transiD
: : i — lastLSN
The action of applying UNDO leads to a CLR . UndoNxtLSN
— In undo scan, do not reapply UNDO if CLR exists " Dirty Page Table '
— UndoNxtLSN: LSN of the next record to be .~ pagelD
processed during undo scan . — recLSN

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

28

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint

— Analysis phase: rebuild transaction table
(for undo phase) and dirty page table (for
redo phase)
— REDO phase: redo transactions whose
effects may not be persistent before the
crash
— UNDO phase: undo transactions that did
not commit before the crash 29

ARIES — Big Picture

Goal: Bring the database to the state before the

Oldest log rec. of 3 crash (REDO phase) and rollback uncommitted
active transactions = :
at crash 5 transactions (UNDO phase)

Smallest recLSN in =

dirty page table _;_ Start from the last complete checkpoint

after Analysis] _ _
— Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

Last chkpt —— — REDO phase: redo transactions whose

effects may not be persistent before the
CRASH crash

R U — UNDO phase: undo transactions that did

not commit before the crash 30

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

31

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

— If ‘update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

—prmm—

32

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

— If ‘update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

(update dirty page table) For each log record:
— If ‘update’ or ‘CLR’: insert to dirtz page table if not exists (PagelD, RecLSN)

33

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
Dirty page table
PagelD RecLSN

34

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint
.._- update: T1 writes P5
20 - update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

v X CRASH, RESTART

Transactio

n Table

TransID

T1;

LastLSN

Q2

Dirty page

table

PagelD

RecLSN

P5

[io]

>

35

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—+ update; T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
v > CRASH, RESTART

Transaction Table

TranslID LastLSN
T1 10
”

(T2) 20

Dirty page table

PagelD RecLSN
P5 10
~ PN
< P3) 20
.3

36

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint
05 — end_checkpoint
10 = update: T1 writes P5

20—~ update: T2 writes P3
30 -+ T1 abort
B ———

45-+T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
v >< CRASH, RESTART

40 -+ CLR: Undo T1 LSN 10

Transaction Table

TranslD | LastLSN
=L 10
T2 20

Dirty page table
PagelD RecLSN
P5 10
P3 20

37

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—+~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
T3 50

T2 20
Dirty page table
PagelD RecLSN
P5 10

P3 20
P1) 50

38

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1

60 = update: T2 writes P5__
\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
T3 50
) T2 (60\
Dirty page table
PagelD RecLSN
A P5 10
P3 20
P1 50

39

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

40

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
— From log record containinq smallest RecLSN in the dirty page table

— Before this LSN, all redo records have been reflected in data pages on disk

41

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash \

— The page is not in dirty page table (DPT) ” ~
>

— The page is in DPT but redo_record.LSN < DPTIEage].reCLSN
— After fetching the data page, redo_record.LSN < page.page_LSN

a 4

42

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint
L1O —— update: T1 writes P5
ap— —
20 =~ update: T2 writes P3

Dirty page table
PagelD RecLSN

30 —.— T1 abort P5 ‘@-
40 -+ CLR: Undo T1 LSN 10 53 20

. =
45-—-T1 End P1 50 No need to update
50 —— update: T3 writes P1 Write alread

: _ , _Data pages rite already
60 T update: T2 writes P5 PagelD | Pago_LoN reflected on disk

 / x =
7 ORASH, RESTART s [0Y
P3 0

P1 0 43

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—+ update: T2 writes P3
T30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5

M >< CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40

IEN
P1 0

Update P3 in
ouffer gogl

No need to flush
P3 now

44

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3

30 - T1 abort

40 —+- CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5

v > CRASH, RESTART

Dirty page table

PagelD RecLSN

P5 10

P3 20

P1 50 No need to update

Data pages Write already

PagelD Page_LSN reflected on disk
_9 P5 40

P3 0

P1 0 45

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint
10 = update: T1 writes P5

Dirty page table

20 —'— update: T2 writes P3 PagelD | RecLSN
30 — T1 abort P5 10
40 - CLR: Undo T1 LSN 10 P3 20
45— T1 End P1 50 Update P1 in
50 —=— update: T3 writes P1 Nt _bufter pool
: ’ . ata pages
60 : update: T2 writes P5 pagelD | Page_LSN No need to flush
v X CRASH, RESTART P1 now
P5 40 —.
P3 0
P1 0 46

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 = update: T2 writes P5
\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

Update P5 in
buffer pool

No need to flush
P5 now

47

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

48

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

Repeat until transaction table is empty:
— Choose largest LastLSN among transactions in the transaction table

— If the log record is an ‘update’: Undo the update, write a CLR, add
record.prevLSN to transaction table
— If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table

— If prevLSN and UpdoNxtLSN are NULL, remove the transaction from
transaction table

\

49

UNDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—~ update T2 writes P3

30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5
X CRASH, RESTART

Transaction Table

TranslID LastLSN | UndoNxtLSN
T3 50 50
T2) 60 60

50

UNDO Phase — Example

LSN LOG Transaction Table
TransD | LastLSN | UndoNxtLSN
+ 00— begin_checkpoint T3 50 50
05 —-— end_checkpoint T2 6070 60 20

10 - update: T1 writes P5
7 20 — update T2 writes P3

30 —— T1 abort LSN LOG (undoNextLSN)

: 70 CLR: Undo T2, LSN 60, (20)
40 -+ CLR: Undo T1 LSN 10 — XK ———— —
45— T1 End

50—~ update: T3 writes P1

~ 60— update: T2 writes P5
n M

X CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
TransD | LastLSN | UndoNxtLSN
+ 00— begin_checkpoint T3 50 80 50 null
05 —-— end_checkpoint T2 70 20

10 - update: T1 writes P5
20—~ update T2 writes P3

30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: | 70 CLR:UndoT2,LSN60, (20)
40 == CLR: Undo T1 LSN 10 80 CLR:UndoT3,LSN50, (null)
45--T1 End

50—+~ update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
TransD | LastLSN | UndoNxtLSN
+ 00— begin_checkpoint T3 80 Aull
05 —-— end_checkpoint T2 70 20

10 - update: T1 writes P5
20—~ update T2 writes P3

30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: | 70 CLR:UndoT2, LSN60, (20)
40 == CLR: Undo T1 LSN 10 80 CLR:UndoT3,LSN50, (null)
45--T1 End 85 T3End

50—~ update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
TransID LastLSN | UndoNxtLSN

A~ 00 —-— begin_checkpoint

05 —-— end_checkpoint T2 76 90 20 null
10 = update: T1 writes P5

update T2 writes P3
30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: _ 70 CLR: Undo T2, LSN 60, (20)

40 == CLR: Undo T1 LSN 10 80 CLR:UndoT3,LSN50, (null)
45—~ T1 End 85 T3 End
50 —— update: T3 writes P1 90 CLR: Undo T2, LSN 20, (null)
60 — update: T2 writes P5

S CRASH. RESTART

54

UNDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—~ update T2 writes P3

30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5
X CRASH, RESTART

Transaction Table

TransID LastLSN | UndoNxtLSN

T2 90 Aol

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)

80
85
90
95

CLR: Undo T3, LSN 50, (null)
T3 End
CLR: Undo T2, LSN 20, (null)
T2 End

a—

55

Crash During Restart — Example

LSN __ LOG
00,05 —— begin_checkpoint, end_checkpoint
10— update: T1 writes P5
20 — update T2 writes P3
30 —— T1 abort
40,45 — CLR: Undo T1 LSN 10, T1 End
50 —— update: T3 writes P1
60 —— update: T2 writes P5
M CRASH, RESTART
_ 70— CLR: Undo T2 LSN 60
80,85 CLR: Undo T3 LSN 50, T3 end _

x CRASH, RESTART
90 - CLR:UndoT2LSN20,T2end -

No need to undo LSN 60 and
LSN 50 again due to the CLRs
created in the previous restart

Can created a checkpoint to
reduce the cost of future restart

56

Q/A — ARIES

Alternatives to logging to provide atomicity and durability?

Logging and recovery in modern database systems?

Challenges in ARIES for modern memory hierarchy?

ARIES with disaggregated storage? <=—

How does the buffer manager obey write ahead logging?

Does the redo order matter?

How much doe§ time/space overhead of logging affect the system?

57

Next Week

Next Monday: Exam review
— Lecture given by TA
— Exam questions in previous years available on course website

Next Wednesday—Friday: Take-home exam

58

