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CS 764: Topics in Database Management Systems
Lecture 2: Join
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Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2
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System Architecture and Assumptions 
CPU: uniprocessor

• No multi-core synchronization complexity
• Could be built on systems of the day

Memory 
• Tens of Megabytes
• Good for both sequential and random accesses
• Capacity is smaller than disk 

Disk
• Good for only sequential accesses

CPU

Disk

Memory

Block
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Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M 
| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Focus only on equi-join 
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Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M 
| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 
FROM R, S
WHERE R.C3 = S.C5



Notation
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 
FROM R, S
WHERE R.C3 = S.C5

answer = {}
for t1 in R do
for t2 in S do
if R.C3 = S.C5
then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 
FROM R, S
WHERE R.C3 = S.C5

answer = {}
for t1 in R do
for t2 in S do
if R.C3 = S.C5
then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Key question: How to execute a join fast?
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Sort Merge Join
Key idea: sort both relations based on join attributes, then traverse 
both relations in the sorting order

R S
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Sort Merge Join
Key idea: sort both relations based on join attributes, then traverse 
both relations in the sorting order

R S
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Challenge: If a relation does not fit in memory, 
need to sort data on disk



Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 13



Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 14

Each sorted run can fit in 
memory



Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 15

Output 
if match

Find matches in sorted runs



Sort Merge Join – Phase 1 
Phase 1: Produce sorted runs of S and R

• Each run of S will be 2 × | M | average length
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Memory

input 
buffer

output 
buffer

Priority queue (heap)

Memory layout in Phase 1



Sort Merge Join – Phase 1 
Phase 1: Produce sorted runs of S and R

• Each run of S will be 2 × | M | average length
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Memory

input 
buffer

output 
buffer

Priority queue (heap)
Q: Where does 2 come from? 
A: Replacement selection 

Memory layout in Phase 1



Sort Merge Join – Replacement Selection
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Min
Heap input bufferoutput buffer

Naïve solution: 
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else 

save new tuple for next run

Min
Heap input bufferoutput buffer



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

Min
Heap input bufferoutput buffer

[1]  https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

A run contains 2 × | M | blocks on average

While heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else 

save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

A run contains 2 × | M | blocks on average

Min
Heap input bufferoutput buffer

[1]  https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

= | " |
# × | % |

+ | & |
# × | % |

≤ | " |
%

Total number of runsWhile heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else 

save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result

• One input buffer required for each run
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Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…

Memory layout in Phase 2

Output 
if match

Find matches in sorted runs



Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result

• One input buffer required for each run

Requirement 
| M | ≥ total number runs

Satisfied if
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Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…
𝑀 ≥

| 𝑆 |
𝑀

𝑀 ≥ | 𝑆 |namely Memory layout in Phase 2



Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges
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Hash table on R
(size = | R | × F )

S
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Simple Hash Join
• Build a hash table on R
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Hash table on R
(size = | R | × F )

Memory

S



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk

write back 
to disk



Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S

write back 
to disk

write back 
to disk



Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S
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GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

33

R S



GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

R S

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout when Partitioning R

out-buf
S0

out-buf
S1

out-buf
Sk

…

Memory layout when Partitioning S



GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions
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R S

Memory

Hash table 
for Ri

Memory layout in Phase 2

input buffer 
for S



GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition
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𝑘 ≤ 𝑀



GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory
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𝑘 ≤ 𝑀

𝑅
𝑘
×𝐹 ≤ 𝑀



GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join: 
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𝑘 ≤ 𝑀

𝑅
𝑘
×𝐹 ≤ 𝑀

𝑅 ≤
𝑀
𝐹

𝑘 ≤
𝑀 "

𝐹
𝑀 ≥ 𝑅 × 𝐹



GRACE vs. Simple Hash Join
When | R | × F < | M |

• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once
• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |  
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)
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GRACE vs. Simple Hash Join
When | R | × F < | M |

• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once
• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |  
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)
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Discussion Question: 
What if  𝑹 × 𝑭 > 𝑴 𝟐?
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Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!
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Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!
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Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1 
of GRACE hash join

Key observation: when | R | is relatively 
small (e.g., | R | = 2 | M |), significant 
memory capacity is unused in Phase 1 of 
GRACE join



Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!

44

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1 
of GRACE hash join

Key observation: when | R | is relatively 
small (e.g., | R | = 2 | M |), significant 
memory capacity is unused in Phase 1 of 
GRACE join

Key idea: Use the otherwise-unused 
memory to build hash table for R0

Hash table for R0



Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join
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Memory

Memory layout in Phase 1 
of hybrid hash join

Hash table for R0



Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R
• R0 is not written to disk
• Performance is like simple hash join
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Memory

Memory layout in Phase 1 
of hybrid hash join

Hash table for R0

out-buf
R1

out-buf
R2



Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R
• R0 is not written to disk
• Performance is like simple hash join

Case 3: | R | × F >> | M |
• R0 is an insignificant fraction of R
• Performance is like GRACE hash join
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Memory

Memory layout in Phase 1 
of hybrid hash join

out-buf
R1

out-buf
R2

out-buf
R5

…

Hash table for R0

out-buf
R3

out-buf
R4

out-buf
Rk



Evaluation

Conclusion 1: Hash join 
is generally better than 
sort-merge join

Conclusion 2: Hybrid 
hash join is strictly better 
than simple and GRACE 
hash joins
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Sort-merge

Simple hash

GRACE hash
Hybrid hash
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Partition Overflow
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So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a 
partition does not fit in memory? 

Solution: further divide into smaller partitions range



Additional Techniques
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Babb array (or bitmap filter)
• One bit per hash bucket in R
• Set the bit if a tuple in R maps to the bucket
• When scanning S, if a tuple hashes to a bucket where the bit is unset, can 

discard the tuple immediately
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52

Babb array (or bitmap filter)
• One bit per hash bucket in R
• Set the bit if a tuple in R maps to the bucket
• When scanning S, if a tuple hashes to a bucket where the bit is unset, can 

discard the tuple immediately

Semi-join
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter 

many S tuples
• Can be added to any join algorithm above



Join – Comments and Q/A
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• How will the join algorithms change in parallel system?
• Is simple hash better since modern systems have large memories?
• Is the assumption | M | > sqrt(| S |) realistic? 
• How to select a good hash function? 
• Babb arrays used in practice? 
• How do new storage devices (e.g., PM, SSD, tiered memory) 

change the story?
• Difficult to understand math. 
• Lack of experiments.



Group Discussion
In some modern in-memory DBMSs, the entire database can fit in 
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared 
to a DRAM vs. Disk setting? 
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Before Next Lecture
Submit review for

Peter Boncz, et al., Database Architecture Optimized for the 
new Bottleneck: Memory Access. VLDB, 1999
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

