WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 2: Join

Xiangyao Yu
9/12/2021

Today’s Paper: Join

Join Processing in Database Systems
with Large Main Memories

LEONARD D. SHAPIRO
North Dakota State University

We study algorithms for computing the equijoin of two relations in a system with a standard
architecture but with large amounts of main memory. Qur algorithms are especially efficient when
the main memory available is a significant fraction of the size of one of the relations to be joined,;
but they can be applied whenever there is memory equal to approximately the square root of the size
of one relation. We present a new algorithm which is a hybrid of two hash-based algorithms and
which dominates the other algorithms we present, including sort-merge. Even in a virtual memory
environment, the hybrid algorithm dominates all the others we study.

Finally, we describe how three popular tools to increase the efficiency of joins, namely filters, Babb
arrays, and semijoins, can be grafted onto any of our algorithms,

Categories and Subject Descriptors: H.2.0 [Database Management]: General; H.2.4 [Database
Management): Systems—query processing; H.2.6 [Database Management): Database Machines

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hash join, join processing, large main memory, sort-merge join

ACM Transactions on Database Systems, 1986

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions

CPU: uniprocessor

CPU * No multi-core synchronization complexity
« Could be built on systems of the day
Memory Memory
—_ * Tens of Megabytes |
~——— Block » Good for both sequential and random accesses
Disk « Capacity is smaller than disk
— Disk

« Good for only sequential accesses

Notation

Relations: R, S (IRI<IS)

Join: S x R

Memory: M

| R I: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Focus only on equi-join

Notation

Relations: R, S (IRI<IS)

Join: S x R

Memory: M

| R I: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Relation R Relation S

SELECT *
FROMR, S
WHERE R.C3 = S.C5

C1 C2 C3 C4

C5 Ce6 C7 C8

Notation

answer = {}

for t; in R do
for t, in S do

if R.C3 =

then answer

return answer

Relation R

Vanilla query executor

answer U { (Cl,..,C8)}

Relation S

C1

C2 C3 C4

SELECT *
FROMR, S
WHERE R.C3 = S.C5

C5 Ce6 C7 C8

Notation

answer = {} Vanilla query executor
for t; in R do

for t, in S do
if R.C3 = S.C5
then answer = answer U {(Cl,..,C8)}
return answer

Key question: How to execute a join fast?

Relation R Relation S

SELECT *
FROMR, S
WHERE R.C3 = S.C5

C1 C2 C3 C4

C5 Ce6 C7 C8

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

10

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

11

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

Challenge: If a relation does not fit in memory,
need to sort data on disk

12

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S

13

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Each sorted run can fit in
memory

Unsorted R and S Sorted runs of Rand S 14

Sort Merge Join

Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join resuit

R S
—\\ Output /—/
' . If match '

xw

Unsorted R and S Sorted runs of Rand S Find matches in sorted runs '°

Sort Merge Join — Phase 1

Phase 1: Produce sorted runs of S and R
« Each run of S will be 2 x | M | average length

Memory

Priority queue (heap)

iInput
buffer

output

buffer

Memory layout in Phase 1

16

Sort Merge Join — Phase 1

Phase 1: Produce sorted runs of S and R
« Each run of S will be 2 x | M | average length

Memory

/

Q: Where does 2 come from?
A: Replacement selection

Priority queue (heap)

iInput | output
buffer | buffer

Memory layout in Phase 1

17

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Naive solution: Each run contains | M | blocks
 Load | M | blocks

« Sort
* Output | M | blocks

Sort Merge Join — Replacement Selection

Min

output buffer Heap input buffer

Replacement selection:
e load | M | blocks and sort

While heap is not empty
If new tuple = all tuples in output
add new tuple to heap
else
save new tuple for next run

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Replacement selection: A run contains 2 x| M | blocks on average

e load | M | blocks and sort

While heap is not empty
If new tuple = all tuples in output
add new tuple to heap
else
save new tuple for next run

[1] hitps://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Replacement Selection

Min

output buffer Heap input buffer

Replacement selection: A run contains 2 x| M | blocks on average
* load | M | blocks and sort

Wh”e heap iS not empty TOtal number Of runs
If new tuple = all tuples in output | S| | R | | S|
+ < —
add new tuple to heap 2X|M| 2X|M| " |M|
else
save new tuple for next run

21

[1] hitps://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result
* One input buffer required for each run

Memory
—— In-buf | in-buf iIn-buf
" | R, R R,
' \ / v in-buf | in-buf in-buf
N OUtpUt “ So S1 Sm
' . if match v
N\ | Memory layout in Phase 2

Find matches in sorted runs

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result

* One input buffer required for each run

Requirement
| M | > total number runs

e | S|
Satisfied if M| = Tl
namely IM|=>|S|

Memory
in-buf | in-buf in-buf
Ro R, R
in-buf | in-buf in-buf
S, S, 3

Memory layout in Phase 2

23

Hash Join

Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn't fit fully in memory, partition hash space into ranges

Hash table on R
(size=IRI|xF)

24

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

25

Simple Hash Join

* Build a hash table on R

Hash table on R
(size=IRIxF)

Memory

26

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

4—

<7

write back
to disk

S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory
* Read in S to join with the subset of R

4—

<7

write back
to disk

S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

D write back

<7
.

write back to disk

47

to disk s

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 2" pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

4—

write back
to disk

write back -,
ISk
to dis S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 3" pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

Hash table on R
(size=IRIxF)

Memory

31

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

32

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

Memory
out-buf | out-buf out-buf
Ro R; Ry

Memory layout when Partitioning R

out-buf
So

out-buf
S,

out-buf

Sk

Memory layout when Partitioning S

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

Memory

Hash table
for R,

input buffer
for S

Memory layout in Phase 2

35

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

36

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F<|M|
p <

37

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F <|M|
p <
The maximum size of R to perform Grace hash join:
M M |?
|R|£uk£| | M| >.|R|XF

F F

38

GRACE vs. Simple Hash Join

Whenl RIxF<IMI

« Simple hash join incurs no |0 traffic (better)
« GRACE hash join writes and reads each table once
* Trivial optimization to GRACE: use simple hash joinwhen | RI x F<| M|

When M2zl RIxF>>IM|

« Simple hash join incurs significant 10 traffic
 GRACE hash join writes and reads each table once (better)

39

GRACE vs. Simple Hash Join

Whenl RIxF<IMI

« Simple hash join incurs no IO traffic (better)
« GRACE hash join writes and reads each table once
* Trivial optimization to GRACE: use simple hash joinwhen | RI x F<| M|

When M2zl RIxF>>IM|

« Simple hash join incurs significant 10 traffic
 GRACE hash join writes and reads each table once (better)

Discussion Question:
What if |R|x F > | M |*?

40

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
* Hybrid hash join

Partition overflow and additional techniques

41

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

42

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

Key observation: when | R | is relatively Memory
small (e.g., | R1=21MI), significant out-buf foutbut |- oubouf
memory capacity is unused in Phase 1 of __ . ! k
GRACE join ~_

Memory layout in Phase 1
of GRACE hash join

43

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

i . . Memor
Key observation: when | R | is relatively 4
C ok out-buf | out-buf out-buf
small (e.g., | Rl =21 M), significant R R R
0 1 Kk

memory capacity is unused in Phase 1 of

GRACE join Hash table for R,

Key idea: Use the otherwise-unused Memory layout in Phase 1
memory to build hash table for RO of GRACE hash join

44

Hybrid Hash Join

Case1:IRIxF<IMI

* No need to partition R
* |dentical to simple hash join

Memory

Hash table for R,

Memory layout in Phase 1
of hybrid hash join

45

Hybrid Hash Join

Case1:IRIxF<IMI
* No need to partition R

. Identical to simple hash join Memory
out-buf
[R1
* R, is a significant fraction of R R,
* R, is not written to disk

* Performance is like simple hash join

Memory layout in Phase 1
of hybrid hash join

Hybrid Hash Join

Case1:IRIxF<IMI

* No need to partition R
* |dentical to simple hash join

Case2:|IRIxF=al M| (ais small)
* R, is a significant fraction of R
* Ry is not written to disk
* Performance is like simple hash join

Case3:IRIxF>1IMI

* Ry is an insignificant fraction of R
» Performance is like GRACE hash join

Memory
out-buf | out-buf out-buf
R, R, Rs
out-buf | out-buf SUt-buf
RS R4 R

Hash table for R, K

Memory layout in Phase 1
of hybrid hash join

47

Evaluation

Seconds y

r 4

N Sort Conclusion 1: Hash join
T ol Sormerge is generally better than
500 |- ® Simple hash sort-merge join

200 L

- Conclusion 2: Hybrid

(@) © GRACE hash hash join is strictly better
Hybrid hash than simple and GRACE
hash joins

100 L

50

20 | Megabytes of

? real memory

i
1 2 5 10 20 50

48

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
« GRACE hash join
» Hybrid hash join
Partition overflow and additional techniques

49

Partition Overflow

So far we assume uniform random distribution for R and S

What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

50

Additional Techniques

Babb array (or bitmap filter)
* One bit per hash bucket in R
» Set the bit if a tuple in R maps to the bucket

« When scanning S, if a tuple hashes to a bucket where the bit is unset, can
discard the tuple immediately

51

Additional Techniques

Babb array (or bitmap filter)
* One bit per hash bucket in R
» Set the bit if a tuple in R maps to the bucket

« When scanning S, if a tuple hashes to a bucket where the bit is unset, can
discard the tuple immediately

Semi-join
 Project join attributes from R, join to S, then join that result back to R

« Useful if full R tuples won't fit into memory, but join will be selective and filter
many S tuples

« Can be added to any join algorithm above

52

Join — Comments and Q/A

* How will the join algorithms change in parallel system?
* |Is simple hash better since modern systems have large memories?
* |s the assumption | M | > sqgrt(l S |) realistic?

* How to select a good hash function?
« Babb arrays used in practice?

* How do new storage devices (e.g., PM, SSD, tiered memory)
change the story?

 Difficult to understand math.
 Lack of experiments.

53

Group Discussion

In some modern in-memory DBMSs, the entire database can fit in

memory. In suc
chip SRAM cac

N a system, can similar optimizations be applied to on-
nes vs. DRAM? What are the key challenges compared

to a DRAM vs.

Disk setting?

54

Before Next Lecture

Submit review for
Peter Boncz, et al., Database Architecture Optimized for the

new Bottleneck: Memory Access. VLDB, 1999

55

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

