
Xiangyao Yu
9/12/2021

CS 764: Topics in Database Management Systems
Lecture 2: Join

1

Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2

Agenda

3

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

Agenda

4

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions
CPU: uniprocessor

• No multi-core synchronization complexity
• Could be built on systems of the day

Memory
• Tens of Megabytes
• Good for both sequential and random accesses
• Capacity is smaller than disk

Disk
• Good for only sequential accesses

CPU

Disk

Memory

Block

5

Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M
| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Focus only on equi-join

6

Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M
| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

7

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *
FROM R, S
WHERE R.C3 = S.C5

Notation

8

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *
FROM R, S
WHERE R.C3 = S.C5

answer = {}
for t1 in R do
for t2 in S do
if R.C3 = S.C5
then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Notation

9

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *
FROM R, S
WHERE R.C3 = S.C5

answer = {}
for t1 in R do
for t2 in S do
if R.C3 = S.C5
then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Key question: How to execute a join fast?

Agenda

10

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

Sort Merge Join
Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

11

Sort Merge Join
Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

12

Challenge: If a relation does not fit in memory,
need to sort data on disk

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 13

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 14

Each sorted run can fit in
memory

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 15

Output
if match

Find matches in sorted runs

Sort Merge Join – Phase 1
Phase 1: Produce sorted runs of S and R

• Each run of S will be 2 × | M | average length

16

Memory

input
buffer

output
buffer

Priority queue (heap)

Memory layout in Phase 1

Sort Merge Join – Phase 1
Phase 1: Produce sorted runs of S and R

• Each run of S will be 2 × | M | average length

17

Memory

input
buffer

output
buffer

Priority queue (heap)
Q: Where does 2 come from?
A: Replacement selection

Memory layout in Phase 1

Sort Merge Join – Replacement Selection

18

Min
Heap input bufferoutput buffer

Naïve solution:
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks

Sort Merge Join – Replacement Selection

19

Replacement selection:
• load | M | blocks and sort

While heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else

save new tuple for next run

Min
Heap input bufferoutput buffer

Sort Merge Join – Replacement Selection

20

Replacement selection:
• load | M | blocks and sort

Min
Heap input bufferoutput buffer

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

A run contains 2 × | M | blocks on average

While heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else

save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Replacement Selection

21

Replacement selection:
• load | M | blocks and sort

A run contains 2 × | M | blocks on average

Min
Heap input bufferoutput buffer

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

= | " |
× | % |

+ | & |
× | % |

≤ | " |
%

Total number of runsWhile heap is not empty
If new tuple ≥ all tuples in output

add new tuple to heap
else

save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result

• One input buffer required for each run

22

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…

Memory layout in Phase 2

Output
if match

Find matches in sorted runs

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result

• One input buffer required for each run

Requirement
| M | ≥ total number runs

Satisfied if

23

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…
𝑀 ≥

| 𝑆 |
𝑀

𝑀 ≥ | 𝑆 |namely Memory layout in Phase 2

Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges

24

Hash table on R
(size = | R | × F)

S

Agenda

25

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

Simple Hash Join
• Build a hash table on R

26

Hash table on R
(size = | R | × F)

Memory

S

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory

27

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R

28

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

29

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

30

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

31

Hash table on R
(size = | R | × F)

Memory

S

Agenda

32

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

33

R S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

R S

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout when Partitioning R

out-buf
S0

out-buf
S1

out-buf
Sk

…

Memory layout when Partitioning S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

35

R S

Memory

Hash table
for Ri

Memory layout in Phase 2

input buffer
for S

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

36

𝑘 ≤ 𝑀

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

37

𝑘 ≤ 𝑀

𝑅
𝑘
×𝐹 ≤ 𝑀

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join:

38

𝑘 ≤ 𝑀

𝑅
𝑘
×𝐹 ≤ 𝑀

𝑅 ≤
𝑀
𝐹

𝑘 ≤
𝑀 "

𝐹
𝑀 ≥ 𝑅 × 𝐹

GRACE vs. Simple Hash Join
When | R | × F < | M |

• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once
• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)

39

GRACE vs. Simple Hash Join
When | R | × F < | M |

• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once
• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)

40

Discussion Question:
What if 𝑹 × 𝑭 > 𝑴 𝟐?

Agenda

41

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!

42

Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!

43

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1
of GRACE hash join

Key observation: when | R | is relatively
small (e.g., | R | = 2 | M |), significant
memory capacity is unused in Phase 1 of
GRACE join

Hybrid Hash Join
When two algorithms are good in different settings, create a hybrid!

44

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1
of GRACE hash join

Key observation: when | R | is relatively
small (e.g., | R | = 2 | M |), significant
memory capacity is unused in Phase 1 of
GRACE join

Key idea: Use the otherwise-unused
memory to build hash table for R0

Hash table for R0

Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join

45

Memory

Memory layout in Phase 1
of hybrid hash join

Hash table for R0

Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R
• R0 is not written to disk
• Performance is like simple hash join

46

Memory

Memory layout in Phase 1
of hybrid hash join

Hash table for R0

out-buf
R1

out-buf
R2

Hybrid Hash Join
Case 1: | R | × F < | M |

• No need to partition R
• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R
• R0 is not written to disk
• Performance is like simple hash join

Case 3: | R | × F >> | M |
• R0 is an insignificant fraction of R
• Performance is like GRACE hash join

47

Memory

Memory layout in Phase 1
of hybrid hash join

out-buf
R1

out-buf
R2

out-buf
R5

…

Hash table for R0

out-buf
R3

out-buf
R4

out-buf
Rk

Evaluation

Conclusion 1: Hash join
is generally better than
sort-merge join

Conclusion 2: Hybrid
hash join is strictly better
than simple and GRACE
hash joins

48

Sort-merge

Simple hash

GRACE hash
Hybrid hash

Agenda

49

System architecture and notations
Join algorithms

• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

Partition Overflow

50

So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

Additional Techniques

51

Babb array (or bitmap filter)
• One bit per hash bucket in R
• Set the bit if a tuple in R maps to the bucket
• When scanning S, if a tuple hashes to a bucket where the bit is unset, can

discard the tuple immediately

Additional Techniques

52

Babb array (or bitmap filter)
• One bit per hash bucket in R
• Set the bit if a tuple in R maps to the bucket
• When scanning S, if a tuple hashes to a bucket where the bit is unset, can

discard the tuple immediately

Semi-join
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter

many S tuples
• Can be added to any join algorithm above

Join – Comments and Q/A

53

• How will the join algorithms change in parallel system?
• Is simple hash better since modern systems have large memories?
• Is the assumption | M | > sqrt(| S |) realistic?
• How to select a good hash function?
• Babb arrays used in practice?
• How do new storage devices (e.g., PM, SSD, tiered memory)

change the story?
• Difficult to understand math.
• Lack of experiments.

Group Discussion
In some modern in-memory DBMSs, the entire database can fit in
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared
to a DRAM vs. Disk setting?

54

Before Next Lecture
Submit review for

Peter Boncz, et al., Database Architecture Optimized for the
new Bottleneck: Memory Access. VLDB, 1999

55

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

