
Xiangyao Yu
11/14/2022

CS 764: Topics in Database Management Systems
Lecture 20: Two-Phase Commit (2PC)

1



Today’s Paper: Distributed Transactions in R*

ACM Trans. Database Syst. 1986.
2



Announcement
Updated schedule for future lectures

Next lecture: Cornus (optimized 2PC in cloud)
Last lecture: GPU databases 

3



Agenda

4

Two-phase commit
Presumed abort (PA)
Presumed Commit (PC)



Distributed Transactions

5

Architectures: shared-nothing vs. shared-disk 
Data is partitioned and stored in each server
A distributed transaction accesses data across multiple partitions

Network

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Nothing

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Disk

Network



Distributed Transactions

6

Architectures: shared-nothing vs. shared-disk 
Data is partitioned and stored in each server
A distributed transaction accesses data across multiple partitions

Network

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Nothing

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Disk

Networktuple A tuple B

Transaction T:
write(A)
write(B)



Atomic Commit Protocol (ACP)

7

Atomic commit protocol: all partitions reach the same commit or 
abort decision of a transaction

tuple A tuple B
Transaction T:

write(A)
write(B)

The two updates must commit or abort atomically

Example:



The Challenge of Atomic Commit

8

A naïve approach: all nodes log and commit independently

tuple A tuple B
Transaction T:

write(A)
write(B)

Log and 
commit

Commit
Log and 
commit

Node 1 Node 2

back to caller



The Challenge of Atomic Commit

9

A naïve approach: all nodes log and commit independently
Node 2 crashes before logging 

• Transaction T commits in node 1 but not in node 2

tuple A tuple B
Transaction T:

write(A)
write(B)

Commit
Log and 
commit

Node 1 Node 2



Two-Phase Commit (2PC)

10

Coordinator Subordinate 2

tuple A tuple B Key idea: let the coordinator log the 
final commit/abort decision

Subordinate 1



Two-Phase Commit (2PC)

11

Coordinator Subordinate 2

tuple A tuple B Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phaseSubordinate 1

[log] 
prepare*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE



Two-Phase Commit (2PC)

12

Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

[log] 
prepare*

[log]
commit*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE

Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phase
Phase 2: commit phase

• Coordinator logs the decision

back to caller



Two-Phase Commit (2PC)

13

Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

back to caller

[log] 
prepare*

[log]
commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

[log] 
prepare*

VOTE YES

ACK

[log]
commit*

PREPARE

[log]
commit*

Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phase
Phase 2: commit phase

• Coordinator logs the decision
• Coordinator sends the decision to 

subordinates
• Coordinator forgets the transaction 

after receiving ACKs



2PC – Abort Example

14

abort*

Coord Subord1

PREPARE

VOTE NO

Subordinate returns VOTE NO if 
the transaction is aborted
• Subordinate can release locks 

and forget the transaction

Subord2

prepare*

VOTE YES



2PC – Abort Example

15

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Subordinate returns VOTE NO if 
the transaction is aborted
• Subordinate can release locks 

and forget the transaction

Skip the commit phase for 
aborted subordinates



2PC – All Subordinates Abort

16

back to caller

abort*

abort* + end

PREPARE

VOTE NO

forget the txn

Skip the second phase entirely if 
the transaction aborts at all the 
subordinates

abort*

VOTE NO

Coord Subord1 Subord2



2PC – Failures

17

Use timeout to detect failures

Subordinate timeout 
• Waiting for PREPARE: self abort

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Time out

Coord Subord



2PC – Failures

18

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Coordinator timeout
• Waiting for vote: self abort

Time out



2PC – Failures

19

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Subordinate timeout 
• Waiting for decision: contact 

coordinator or peer subordinates 
(may block until the coordinator 
recovers)Time out



2PC – Failures

20

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Coordinator timeout
• Waiting for ACK: contact 

subordinates

Time out



2PC – Alternative Designs?

21

Subordinate returns vote to 
coordinator before logging 
prepare?

back to caller

prepare
commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?

22

Subordinate returns vote to 
coordinator before logging 
prepare?

Problem: subordinate may 
crash before the log record is 
written to disk. The log record is 
thus lost but the coordinator 
already committed the 
transaction

back to caller

prepare
commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?

23

Coordinator sends decision to 
subordinates before logging the 
decision?

back to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?

24

Coordinator sends decision to 
subordinates before logging the 
decision?

Problem: coordinator crashes 
before logging the decision and 
decides to abort after restartback to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



Optimization 1: Presumed Abort (PA)

25

Observation: It is safe for a coordinator to “forget” a transaction 
immediately after it makes the decision to abort it and to write an 
abort record 



PA: Aborted Transaction

26

Coord Subord1 Subord2
back to 
caller

abort

PREPARE

VOTE NO prepare*abort*

Coord Subord1
PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate



PA: Aborted Transaction

27

Coord Subord1 Subord2
back to 
caller

abort
abort

abort
ABORT

PREPARE

forget 
the txn

prepare*
VOTE YES

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end
forget the txn

Subord2

prepare*

VOTE YES

ACK

Standard 2PC

Presumed Abort
• The abort record is not forced in subordinate
• The abort record is not forced in coordinator
• Coordinator forgets the transaction early
• No ACK for aborts
• Behavior of committed transactions unchanged

VOTE NO



PA: Partially Readonly Transactions

28

back to caller

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE READ

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Readonly subordinate does not log in prepare phase and skips commit phase



PA: Completely Readonly Transactions

29

back to caller

Coord Subord1

PREPARE
VOTE READ

forget the txn

Subord2

VOTE READ

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Completely readonly transactions skip the commit phase entirely



Optimization 2: Presumed Commit (PC)

30

Since most transactions are expected to commit, can we make 
commits cheaper by eliminating the ACKs for COMMITS? 



PC: Committed Transaction 

31

Coord Subord1 Subord2

prepare*

PREPARE

VOTE YES
prepare*

VOTE YES

collecting*

back to caller

commit*

commit

COMMIT

commit

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Need to force log collecting due to potential abort of coordinator
No need to send ACK for COMMITS



PC: Aborted Transaction 

32

abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*
VOTE YES

collecting*

back to caller
abort*

abort*

COMM IT

end
forget the txn

ACK

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end
forget the txn

Subord2

prepare*

VOTE YES

ACK

Abort behavior is similar to standard 2PC but requires logging collecting



Summary

33

Presumed Abort (PA) is better than standard 2PC (widely used in practice)
Presumed Commit (PC) is worse than PA in most cases



Conclusions

34

Distributed transaction requires an atomic commit protocol
Two-phase commit (2PC) is the most widely used atomic commit 
protocol
• Standard 2PC
• Optimization 1: presumed abort (PA) — most commonly used in practice
• Optimization 2: presumed commit (PC)



Q/A – Two Phase Commit

35

More performant alternatives to 2PC? 
Transactions in today’s distributed DBMS? 
2PC in replicated and non-replicated data systems? 
Distributed deadlocks possible in shared-nothing database?
Is coordinator a single point of failure? 
What if a long-running txn fails before reaching commit or abort? 
Cope with message lost during network transmission? 
2PC vs. Paxos? 



Next Lecture
Zhihan Guo, et al., Cornus: Atomic Commit for a Cloud DBMS with 
Storage Disaggregation. arXiv 2102.10185 (to appear in VLDB), 
2022

36

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/cornus-arxiv.pdf

