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CS 764: Topics in Database Management Systems
Lecture 20: Two-Phase Commit (2PC)
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Today’s Paper: Distributed Transactions in R*

ACM Trans. Database Syst. 1986.
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Announcement
Updated schedule for future lectures

Next lecture: Cornus (optimized 2PC in cloud)
Last lecture: GPU databases 
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Agenda
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Two-phase commit
Presumed abort (PA)
Presumed Commit (PC)



Distributed Transactions
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Architectures: shared-nothing vs. shared-disk 
Data is partitioned and stored in each server
A distributed transaction accesses data across multiple partitions
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Distributed Transactions
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Architectures: shared-nothing vs. shared-disk 
Data is partitioned and stored in each server
A distributed transaction accesses data across multiple partitions
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Atomic Commit Protocol (ACP)
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Atomic commit protocol: all partitions reach the same commit or 
abort decision of a transaction

tuple A tuple B
Transaction T:

write(A)
write(B)

The two updates must commit or abort atomically

Example:



The Challenge of Atomic Commit
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A naïve approach: all nodes log and commit independently

tuple A tuple B
Transaction T:

write(A)
write(B)

Log and 
commit

Commit
Log and 
commit

Node 1 Node 2

back to caller



The Challenge of Atomic Commit
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A naïve approach: all nodes log and commit independently
Node 2 crashes before logging 

• Transaction T commits in node 1 but not in node 2

tuple A tuple B
Transaction T:

write(A)
write(B)

Commit
Log and 
commit

Node 1 Node 2



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B Key idea: let the coordinator log the 
final commit/abort decision

Subordinate 1



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phaseSubordinate 1

[log] 
prepare*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

[log] 
prepare*

[log]
commit*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE

Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phase
Phase 2: commit phase

• Coordinator logs the decision

back to caller



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

back to caller

[log] 
prepare*

[log]
commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

[log] 
prepare*

VOTE YES

ACK

[log]
commit*

PREPARE

[log]
commit*

Key idea: let the coordinator log the 
final commit/abort decision

Phase 1: prepare phase
Phase 2: commit phase

• Coordinator logs the decision
• Coordinator sends the decision to 

subordinates
• Coordinator forgets the transaction 

after receiving ACKs



2PC – Abort Example
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abort*

Coord Subord1

PREPARE

VOTE NO

Subordinate returns VOTE NO if 
the transaction is aborted
• Subordinate can release locks 

and forget the transaction

Subord2

prepare*

VOTE YES



2PC – Abort Example
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back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Subordinate returns VOTE NO if 
the transaction is aborted
• Subordinate can release locks 

and forget the transaction

Skip the commit phase for 
aborted subordinates



2PC – All Subordinates Abort
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back to caller

abort*

abort* + end

PREPARE

VOTE NO

forget the txn

Skip the second phase entirely if 
the transaction aborts at all the 
subordinates

abort*

VOTE NO

Coord Subord1 Subord2



2PC – Failures
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Use timeout to detect failures

Subordinate timeout 
• Waiting for PREPARE: self abort

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Time out

Coord Subord



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Coordinator timeout
• Waiting for vote: self abort

Time out



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Subordinate timeout 
• Waiting for decision: contact 

coordinator or peer subordinates 
(may block until the coordinator 
recovers)Time out



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord Use timeout to detect failures

Coordinator timeout
• Waiting for ACK: contact 

subordinates

Time out



2PC – Alternative Designs?
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Subordinate returns vote to 
coordinator before logging 
prepare?

back to caller

prepare
commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Subordinate returns vote to 
coordinator before logging 
prepare?

Problem: subordinate may 
crash before the log record is 
written to disk. The log record is 
thus lost but the coordinator 
already committed the 
transaction

back to caller

prepare
commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Coordinator sends decision to 
subordinates before logging the 
decision?

back to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Coordinator sends decision to 
subordinates before logging the 
decision?

Problem: coordinator crashes 
before logging the decision and 
decides to abort after restartback to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



Optimization 1: Presumed Abort (PA)
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Observation: It is safe for a coordinator to “forget” a transaction 
immediately after it makes the decision to abort it and to write an 
abort record 



PA: Aborted Transaction

26

Coord Subord1 Subord2
back to 
caller

abort

PREPARE

VOTE NO prepare*abort*

Coord Subord1
PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate



PA: Aborted Transaction
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Coord Subord1 Subord2
back to 
caller

abort
abort

abort
ABORT

PREPARE

forget 
the txn

prepare*
VOTE YES

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end
forget the txn

Subord2

prepare*

VOTE YES

ACK

Standard 2PC

Presumed Abort
• The abort record is not forced in subordinate
• The abort record is not forced in coordinator
• Coordinator forgets the transaction early
• No ACK for aborts
• Behavior of committed transactions unchanged

VOTE NO



PA: Partially Readonly Transactions
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back to caller

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE READ

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Readonly subordinate does not log in prepare phase and skips commit phase



PA: Completely Readonly Transactions
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back to caller

Coord Subord1

PREPARE
VOTE READ

forget the txn

Subord2

VOTE READ

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Completely readonly transactions skip the commit phase entirely



Optimization 2: Presumed Commit (PC)
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Since most transactions are expected to commit, can we make 
commits cheaper by eliminating the ACKs for COMMITS? 



PC: Committed Transaction 
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Coord Subord1 Subord2

prepare*

PREPARE

VOTE YES
prepare*

VOTE YES

collecting*

back to caller

commit*

commit

COMMIT

commit

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK
commit*

Need to force log collecting due to potential abort of coordinator
No need to send ACK for COMMITS



PC: Aborted Transaction 
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abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*
VOTE YES

collecting*

back to caller
abort*

abort*

COMM IT

end
forget the txn

ACK

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end
forget the txn

Subord2

prepare*

VOTE YES

ACK

Abort behavior is similar to standard 2PC but requires logging collecting



Summary
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Presumed Abort (PA) is better than standard 2PC (widely used in practice)
Presumed Commit (PC) is worse than PA in most cases



Conclusions
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Distributed transaction requires an atomic commit protocol
Two-phase commit (2PC) is the most widely used atomic commit 
protocol
• Standard 2PC
• Optimization 1: presumed abort (PA) — most commonly used in practice
• Optimization 2: presumed commit (PC)



Q/A – Two Phase Commit
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More performant alternatives to 2PC? 
Transactions in today’s distributed DBMS? 
2PC in replicated and non-replicated data systems? 
Distributed deadlocks possible in shared-nothing database?
Is coordinator a single point of failure? 
What if a long-running txn fails before reaching commit or abort? 
Cope with message lost during network transmission? 
2PC vs. Paxos? 



Next Lecture
Zhihan Guo, et al., Cornus: Atomic Commit for a Cloud DBMS with 
Storage Disaggregation. arXiv 2102.10185 (to appear in VLDB), 
2022
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https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/cornus-arxiv.pdf

