WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 21: Cornus

Xiangyao Yu
11/16/2022

Today’s Paper: Cornus

2102.10185v4 [cs.DB] 13 Oct 2022

arXiv

Cornus: Atomic Commit for a Cloud DBMS with
Storage Disaggregation (Extended Version)

Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren,
Xiangyao Yu, Mahesh Balakrishnan', Philip A. Bernstein*
University of Wisconsin-Madison, fConfluent, Inc., *Microsoft Research
{zhihan,xzeng, kanwu, wuh-chwen,ziwei,yxy} @cs.wisc.edu

mbalakri

ABSTRACT
Tiwo-phase commit (2PC) is widely used in distributed databases to
ensure atomicity of distributed transactions. Conventional 2PC was
originally designed for the shared-nothing architecture and has two
limitations: long latency due to two eager log writes on the critical
path, and blocking of progress when a coordinator fails.

Modern cloud-native databases are moving to a storage disaggre-
gation architecture where storage is a shared highly-a

io,philbe @mi ft.com

(i
|

[hau]
S
|

Our key observation is that disaggregated storage enables protocol
innovations that can address both the long-latency and blocking prob-
lems. We develop Cornus, an optimized 2PC protocol to achieve
this goal. The only extra functionality Cornus requires is an atomic
compare-and-swap capability in the storage layer, which many ex-
isting storage services already support. We present Cornus in detail
with proofs and show how it addresses the two limitations. We also
deploy it on real storage services including Azure Blob Storage and
Redis. Empirical evaluations show that Cornus can achieve up to
1.9x latency reduction over conventional 2PC.

1 INTRODUCTION

Databases are migrating to the cloud because of desirable fea-
tures such as elasticity, high availability, and cost iti
Modern cloud-nati feature a di: ion ar-
chitecture where the storage is decoupled from computation as a
standalone service as shown in Figure 1b. This architecture allows
independent scaling and billing of computation and storage, which
can improve resource utilization, reduce operational cost, and enable
flexible cloud dep with h g Many
cloud-native database systems adopt such an architecture for both
OLTP [22, 49, 62, 67] and OLAP [15-17, 24, 31, 60]. Nowadays, as
storage services offer essential functions such as fault tolerance, scal-
ability, and security at low-cost, systems start to layer their designs
on the existing disaggregated storage services [23, 27].

This paper focuses on efficient deployment of the two-phase
commit protocol on existing storage services. Two-phase commit
(2PC) is the most widely used atomic commit protocol, which en-
sures that distributed transactions commit in either all or none of
the involved data partitions. 2PC was originally designed for the
shared-nothing architecture and suffers from two major problems.
The first is long latency: 2PC requires two round-trip network mes-
sages and associated logging operations. Previous work has demon-
strated that the majority of a transaction’s execution time can be
attributed to 2PC [20, 21, 33, 42, 50, 52, 64]. The second problem
is blocking (25, 26, 53). Blocking occurs if a coordinator crashes

VLDB 2022

(abis sariice = 8® =
2 service.

(Network <<

(a) Shared-nothing (b) Storage-disaggregation

Figure 1: Shared-Nothing vs. Storage-Disaggregation.

before notifying participants of the final decision. These two prob-
lems greatly limit the performance of 2PC, especially in a storage
disaggregation architecture

Various techniques have been proposed to address these two
problems with 2PC. Some proposed optimizations target the shared-
nothing architecture and do not solve both problems simultaneously.
These protocols either reduce latency by making strong assumptions
about the workload and/or system that are not always practical for
disaggregated storage [19-21, 26, 45, 46, 55, 56], or they mitigate
the blocking problem by adding an extra phase and prolong la-
tency [25, 41, 53]. Another line of research addresses both problems
through izing the storage. include Paxos Com-
mit [39], TAPIR [65], MDCC [44], and parallel commit in Cock-
roachDB [57]. Existing solutions, however, are not applicable to gen-
eral storage services because they require customized storage designs
that perform conflict detection between transactions [6, 44, 57, 65]
and/or need specific replication protocols [39, 44, 65]. Therefore,
they cannot be readily applied to most existing storage services.

In this paper, we aim to maximize the flexibility brought by
disaggregation without requiring customized APIs for the storage
service. Therefore, a database can adopt existing highly optimized
storage services and thereby avoid the expense of developing a
new one, and can also allow the storage to adopt new mechanisms
(e.g., new ication p ls) ind dently. We aim to answer
the following research question: What is the minimal requirement
from the storage layer to enable 2PC optimizations addressing high
latency and blocking? Our answer is that the only requirement is the
ability to provide log-once functionality, which ensures that for each
transaction, only one update of its state in the log is allowed. We
show that log-once semantics can be achieved with a simple compare-
and-swap-like API, which is supported by almost every storage
service today, including Redis [10], Microsoft Azure Storage [28],
Amazon Dynamo [32], and Google BigTable [29].

Announcement

No lecture on Wednesday next week
Optional 10-min meeting to discuss your project with instructor

Signup sheet (access using your UW account)

— https://docs.google.com/spreadsheets/d/1Hatk CJkKUD8Z10zVe xZ90xhfthr
Y6YAQIIONX8uS9g/edit?usp=sharing

Meetings over zoom

— https://uwmadison.zoom.us/j/92584913804 ?pwd=NVdONOVjcWJLOTVwVk9
UNzdRSURyZz09

https://docs.google.com/spreadsheets/d/1HatkCJkKUD8ZI0zVe_xZ9OxhfthrY6YAgiI9NX8uS9g/edit?usp=sharing
https://uwmadison.zoom.us/j/92584913804?pwd=NVdON0VjcWJLOTVwVk9UNzdRSURyZz09

Outline

Cloud database
Storage disaggregation
Cornus protocol

Databases Moving to the Cloud

According to Gartner Report [']
$39.2 hillion, 49% of all DBMS revenue from cloud in 2021

On-prem database
$40.8B in 2021
I I I I Cloud database
!17 2018 2019 2020 2021 $39'ZB in 2021

Cloud vs. On-premises Revenue

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

Databases Moving to the Cloud

According to Gartner Report [']
$39.2 hillion, 49% of all DBMS revenue from cloud in 2021

On-prem database
$40.8B in 2021
I I I I Cloud database Low Cost
!17 2018 2019 2020 2021 $39'ZB in 2021

Cloud vs. On-premises Revenue Elasticity

Availability

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

Databases Moving to the Cloud

Transactional DB

Amazon ORACLE:
AU rO ra DATABASE

POLARDRB CLOUD SERVICE
Orleans

*%) §Qlf_ Server
GaussDB

) TipB 9 ©

Cockroach ps

‘ yugabyteDB (9
*

Azure Cosmos DB

Cloud
Spanner

Analytical DB

Squl,(\z SQL i"o:é snow flake

o

. mongo
VERTICA

W

Amazon Athena

Google
BigQuery

IVE

presto

amazon
REDSHIFT

\ /7
> trino

Cloud DB: Storage-Disaggregation

Compute cluster

e e e Database logic in computer cluster
S S S

* * *

Data Center Network

Storage as a Service (SaaS)

N T Database states (e.g., tables and logs)
redis QTiKV &) o in cloud storage service

Manage computation and storage as separate services

Cloud DB: Storage-Disaggregation

Compute cluster

.................. S g .
Database logic in computer cluster
S A O S.
Data Center Network e Increasing network speed
Storage as a Service (SaaS)
Apze S pocksps o Database states (e.g., tables and logs)
redis QTikv € - in cloud storage service

Manage computation and storage as separate services

Advantages of Storage-Disaggregation

Compute cluster

--

S : S S

3 3

Data Center Network

Storage as a Service (SaaS)

A pzure 7% RocksDB

S
redis @QTIKV O .

Advantage #1: Elasticity

- Compute and storage resources can

scale independently

10

Advantages of Storage-Disaggregation

Compute cluster

--

3 3

Data Center Network

Storage as a Service (SaaS)

L\éééi%% “~ RocksDB

S
redis @QTIKV O .

Advantage #1: Elasticity

« Compute and storage resources can
scale independently

Compute
&—— nodes

Network Network

Storage

¢ nodes

Storage-intensive
workload

Compute-intensive
workload

11

Advantages of Storage-Disaggregation

Compute cluster

--

3 3

Data Center Network

Storage as a Service (SaaS)

/A\é%éi%% “~ RocksDB

S
redis @QTIKV O .

Advantage #2: Low Cost

 Storage service can be much cheaper
than compute servers

S3 storage price | $0.02 per GB per month

16 vCPU Virtual Machine ‘ $0.5 per hour per VM

12

Advantages of Storage-Disaggregation

Compute cluster

--

3 3

Data Center Network

Storage as a Service (SaaS)

L‘é%éi%% “~ RocksDB

S
redis @QTIKV O .

Advantage #2: Low Cost

 Storage service can be much cheaper
than compute servers

S3 storage price | $0.02 per GB per month

16 vCPU Virtual Machine ‘ $0.5 per hour per VM

Load|

» Time

13

Advantages of Storage-Disaggregation

Compute cluster

--

CPU CPU
< S <)

3 3

Data Center Network

Storage as a Service (SaaS)

/A\é%éi%% “~ RocksDB

S
redis @QTIKV O .

Advantage #2: Low Cost

 Storage service can be much cheaper
than compute servers

S3 storage price | $0.02 per GB per month
16 vCPU Virtual Machine ‘ $0.5 per hour per VM

Load| Cost of previsioning for peak

» Time

14

Advantages of Storage-Disaggregation

Compute cluster

--

CPU CPU
< S <)

3 3

Data Center Network

Storage as a Service (SaaS)

A pzure 7% RocksDB

S
redis @QTIKV O .

Advantage #2: Low Cost

 Storage service can be much cheaper
than compute servers

S3 storage price | $0.02 per GB per month

16 vCPU Virtual Machine ‘ $0.5 per hour per VM

Load| Cost of previsioning for peak

/\ /\ /\ Cost of elastic

/ \/ \ / \ previsioning

Time

15

Advantages of Storage-Disaggregation

Compute cluster

--

3 3

Data Center Network

Storage as a Service (SaaS)

/A\é%éi%% “~ RocksDB

S
redis @QTIKV O .

Advantage #2: Low Cost

 Storage service can be much cheaper
than compute servers

S3 storage price | $0.02 per GB per month

16 vCPU Virtual Machine ‘ $0.5 per hour per VM

Load| Cost of previsioning for peak

/\ /\ /\ Cost of elastic

/ \/ \ / \ previsioning
! :
|

Time

No compute cost at zero load

16

Advantages of Storage-Disaggregation

........................ S Advantage #3: Availability

- Storage service provides high availability
" " " through geo-replication

R g g » Simplifies fault tolerance in DB

3 3

Data Center Network

Storage as a Service (SaaS)

L‘é%éi%% “~ RocksDB

Advantages of Storage-Disaggregation

Compute cluster

--

S S S

* * *

Data Center Network
Storage as a Service (SaaS)

_ — STORAGE

S
redis @QTIKV O .

Advantage #3: Availability
« Storage service provides high availability
through geo-replication
« Simplifies fault tolerance in DB

Storage-disaggregation architecture
widely deployed in cloud databases

Amazon S P85{ server GaussDB [amazen

Aurora POLARDB

mTiDB @ yugabyteDB Cy Sggs!;y
SpQI"ll(\z SQL i:°:<showf|0ke presto
SHive

18

Storage-Disaggregation vs. Shared Disk

Compute cluster Compute cluster
Data Center Network Data Center Network
Storage as a Service (SaaS) Shared storage devices

/Aéggﬁ RocksDB @ @ @

redis mTiKV @ Cloud @ @ @

Bigtable

The storage service can scale horizontally, has built-in high
availability, and has richer APIs

Distributed Atomic Commitment

Data partitioned across machines

. . .
..

Partition 1 Partition 2 Partition 3

20

Distributed Atomic Commitment

Transaction
write(A) write(B) write(C)

.
..............

Partition 1

. .
............................

Partition 2 Partition 3

Data partitioned across machines

A transaction updates data across
multiple partitions

21

Distributed Atomic Commitment

Transaction
write(A) write(B) write(C)
= N— =

.
..............

Partition 1

. .
............................

Partition 2 Partition 3

Data partitioned across machines

A transaction updates data across
multiple partitions

Atomic commitment requires the
transaction to commit in all or none of
the involved partitions

22

Distributed Atomic Commitment

write(A)

Transaction
write(B) write(C)

Storage service

With storage disaggregation, log files
locate in the storage service

23

Two-Phase Commit (2PC)

Transaction _ o
write(A) write(B) write(C) Coordinator initiates the 2PC protocol

The example assumes a committing

@ @ @ transaction

[Coordinator] Participant 1 Participant 2

@S @S @S

24

Two-Phase Commit (2PC)

Transaction _ o
write(A) write(B) write(C) Coordinator initiates the 2PC protocol

[Coordinator] Participant 1 Participant 2

B BS B

25

Two-Phase Commit (2PC)

Transaction o
write(A) write(B) write(C) Each participant appends VOTE-YES
...... _ to local Iog file
— Promise not to unilaterally abort

_ Goordinator

@S Be e

- JVOTE-YES N vorE-vES :| VOTE-YES

26

Two-Phase Commit (2PC)

Transaction o _
write(A) write(B) write(C) Participants reply votes to coordinator

[Coordinator] Participant 1 Participant 2

@e BS Be

VOTE-YES | VOTE-YES :| VOTE-YES

27

Two-Phase Commit (2PC)

Transaction . | o
write(A) write(B) write(C) Coordinator logs the final decision (e.g.,
e E o : o 5 COMMITor ABORD
s ©© = B .
@ @ The decision log record is the ground

truth of the transaction outcome

[Coordinator] Participant 1 Participant 2

@e BS Be

- JVOTE-YES Y vore-ves :| VOTE-YES

28

Two-Phase Commit (2PC)

write(A) write(B)

Transaction
write(C)

o B

[Coordinator] Participant 1

B BS

Participant 2

@s

| vOTE-YES

| vore-ves :| VOTE-YES

Q]

backto§ §
user i i

Reply to user after writing the decision
log record

Two-Phase Commit (2PC)

write(A) write(B) write(C)

Transaction

E CPU ;F::::::::>

[Coordinator]

back to ;|

user

@e

. | vOTE-YES

@s

Participant 1 Participant 2

@s

| vore-ves :| VOTE-YES

Coordinator sends the final decision to
all participants

30

Two-Phase Commit (2PC)

Transaction | | N
write(A) write(B) write(C) Coordinator sends the final decision to
i —— all participants
......) 'LEJ- @
@ @ @ Participants log the decision

— For independent recovery upon failure

[Coordinator] Participant 1 Participant 2

@e @S @e

VOTE-YES

VOTE-YES j VOTE-YES

R]
back to *
user | :'

Limitations of 2PC

Transaction
write(A) write(B) write(C)
CPU CPU CPU

m

[

Coordinator } Participant 1 Participant 2

@s

- | vOTE-YES

Be

@s

VOTE-YES j VOTE-YES

backto% §

user

Ol

Limitation #1: Long latency

— User experiences latency of two logging
operations

32

Limitations of 2PC

Transaction
write(A) write(B) write(C)
CPU CPU CPU
 Coordinator

@S Be e

. | vOTE-YES

| vore-ves :| VOTE-YES

—

*Efa“ timeout § : timeout | |

P —e . —e

e T contact coordinator : Block until
Pl timeout : : timeout | ¢ .

— —a& : coordinator
"

T inatbr :
contact coordinato recovers!

Limitation #1: Long latency

— User experiences latency of two logging
operations

Limitation #2: Blocking problem

— Participants are blocked if the coordinator
fails

33

2PC Limitations — Prior Solutions

Solutions Example systems Limitations in prior solutions
Coordinator log [1] « Extra system or workload

Reduce latency Implicit yes vote [2] assumptions
Early prepare [3] * Violate site autonomy

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[38] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

34

2PC Limitations — Prior Solutions

Solutions Example systems

Limitations in prior solutions

Coordinator log [1]

Reduce latency Implicit yes vote [2]
Early prepare [3]

Non-blocking Three-phase commit (3PC) [4]

« Extra system or workload

assumptions

* Violate site autonomy

Requires extra latency and/or
network messages

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[38] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

35

2PC Limitations — Prior Solutions

Solutions Example systems

Limitations in prior solutions

Coordinator log [1]

Reduce latency Implicit yes vote [2]
Early prepare [3]

Non-blocking Three-phase commit (3PC) [4]
Paxos commit [5]

Codesign 2PC MDCC [6]

with replication Parallel commit [7]
TAPIR [8]

« Extra system or workload
assumptions
* Violate site autonomy

Requires extra latency and/or
network messages

« Extra design complexity
» Custom-designed consensus protocol

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[38] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981
[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006

[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013

[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020
[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018

36

2PC Limitations — Prior Solutions

Solutions Example systems Limitations in prior solutions
Coordinator log [1] « Extra system or workload
Reduce latency Implicit yes vote [2] assumptions
Early prepare [3] * Violate site autonomy
Non-blocking Three-phase commit (3PC) [4] * Requires exira latency and/or
network messages
_ Paxos commit [5] « Extra design complexity
Codesign 2PC MDCC [6] « Custom-designed consensus protocol
with replication Parallel commit [7]
Tapir [8]

Research Question: What is the minimal requirement from the
storage service to enable 2PC optimizations addressing high

latency and blocking?
37

Cornus Overview

An optimized two-phase commit protocol for a cloud database with
storage disaggregation

38

Cornus Overview

An optimized two-phase commit protocol for a cloud database with
storage disaggregation

2PC Limitation 1: Long latency
= Cornus reduces 2 logging events to 1 logging event

2PC Limitation #2: Blocking problem
= Cornus is non-blocking

39

Cornus Overview

An optimized two-phase commit protocol for a cloud database with
storage disaggregation

2PC Limitation 1: Long latency
= Cornus reduces 2 logging events to 1 logging events

2PC Limitation #2: Blocking problem
= Cornus is non-blocking

Only new storage-layer function is LogOnce() which can be
Implemented using compare-and-swap

40

Cornus Key ldeas

Transaction
write(A) write(B) write(C)
CPU CPU CPU

m

[Coordinator }

R

@e

. | vOTE-YES

Participant 1 Participant 2

@s

@s

| vore-ves :| VOTE-YES

—_—

backtoé :

user

——

Key idea #1: Remove decision logging

41

Cornus Key ldeas

Transaction
write(A) write(B) write(C)
..

L \

m

[Coordinator]

@e

. | vOTE-YES

Participant 1

Be

Participant 2

@s

| vore-ves :| VOTE-YES

backto; : P
user i i

Key idea #1: Remove decision logging

Ground truth: collective votes in all
participants logs
— Uncertain node can directly read all votes

42

Cornus Key ldeas

Transaction
write(A) write(B) write(C) Key idea #1: Remove decision logging

~— Ground truth: collective votes in al
participants logs
— Uncertain node can directly read all votes

[Coordinator] Participant 1 Participant 2

@s @s gs

N Enabled by storage disaggregation
Jvoreves T voreves | through

. JvotE-vES

——— — - — Highly available storage service
ackto: : PN N
user :I — Shared across compute nodes

43

Cornus Key ldeas

write(A) write(B)

Transaction
write(C)

[Coordinator } Participant 1

B BS

Participant 2

@s

| voTE-YES

| vore-ves :| VOTE-YES

g

backtoé : =

user

Key idea #2: LogOnce() storage API

Cornus Key ldeas

Transaction
write(A) write(B) write(C) Key idea #2: LogOnce() storage API

| | | Avoid blocking by directly updating log
@ files of unresponsive nodes
— Only first LogOnce() request can succeed

[Coordinator] Participant 1 Participant 2

@e BS Be

- JVOTE-YES Y vore-ves :| VOTE-YES

backto; : P

user

45

Cornus Key ldeas

Transaction
write(A) write(B) write(C)
E| CPU |3 | CPU | CPU |3
 Coordinator
8BS @e &@
< ?=%EF==:: : ; -
backto; : Y~

user

Key idea #2: LogOnce() storage API

Avoid blocking by directly updating log
files of unresponsive nodes
— Only first LogOnce() request can succeed

LogOnce() can be implemented using

CAS-like APls (e.g., Etags)

é / Azure

red|s _— STORAGE

Cﬂoud
Blgtable

amazon
DynamoDB

46

Cornus Key ldeas

Transaction
write(A) write(B) write(C) Key idea #2: LogOnce() storage API

Enabled by storage disaggregation

@ @ @ through

Goordinator | — Rich APIs of storage service
@e (1S *@

 JVOTE-VES | .VOTE YES :| VOTE-YES

R P
< f N Pl é P
backto: "~ =N s Cloud
ackto: ! :l . / Azure amazon
user = redIS - STORAGE B|gtable DynamoDB

47

Cornus Failure Example

Transaction _ _
write(A) write(B) write(C) Coordinator fails

[Coordinator } Participant 1 Participant 2

@e BS Be

: JVOTE-YES

. | vore-ves :| VOTE-YES
fail J&: =

48

Cornus Failure Example

[Coordinator] Participant 1

@e BS

Transaction
write(A) write(B) write(C)

Participant 2

@s

. JvoTE-vES
fail Y@

| vore-ves :| VOTE-YES

timeout :
, :

Coordinator fails

Timeout in participant 1 waiting for
coordinator’s message

Cornus Failure Example

Transaction
write(A) write(B) write(C)

[Coordinator } Participant 1 Participant 2

@e BS Be

. JvoTE-vES

. | vore-ves :| VOTE-YES
fail J&: =

timeout? P

Use LogOnce() to write ABORT to other

nodes’ log files

50

Cornus Failure Example

Transaction

write(A) write(B) write(C) Use LogOnce() to write ABORT to other
pe e nodes’ |Og files

/ \ VOTE-YES already exists, LogOnce()

does not modify log content

[Coordinator] Participant 1 Participant 2

@e BS Be

. JvoTE-vES

. | vore-ves :| VOTE-YES
fail J&: =

timeout : Pl

51

Cornus Failure Example

Transaction
write(A) write(B) write(C)

[Coordinator } Participant 1 Participant 2

@e BS Be

. JvoTE-vES

. | vore-ves :| VOTE-YES
fail J&: =

timeout

=—"

vors.ygs"jQ T VOTEVES | |

Storage service returns VOTE-YES

without updating the logs

Participant 1 logs the COMMIT decision

52

Cornus Failure Example

[Coordinator] Participant 1

B BS

Transaction
write(A) write(B) write(C)

Participant 2

@s

. JvoTE-vES
fail Y@

| vore-ves :| VOTE-YES

timeout

=—"

- VOTEyes™ j VOTE-YES | |

Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

Same process can happen for other
participants (e.g., Participant 2)

53

Cornus vs. 2PC Summary

Cornus

e
n

Commit Q | VOTE-YES | vore-ves ﬁ:' VOTE-YES
Case - =

@
@
- 8
©@

backto | |
user i i

Two-Phase Commit

54

Cornus vs. 2PC Summary

Cornus

@
@
- @
@
©@

Commit
Case

| VOTEVES - Jvoreves) vore-ves

.

backto |
user

a
©
©
a8
©

M VOTEYES Y voreves] vore-ves

Failure
Case

fail

tuneout' :

: R
\

VOTE yES J VOTE-YES . Non-Blocking!

fail

Two-Phase Commit

@
@
|
©@
@
@

N VOTEVES Y voreves) vore-ves

y
TTCIILLLL L

A

a8
©
©
a
©

| JVOTEVES) vOTE-YES :' VOTE-

£ YVES

timeout § timeout §

timeout §

umeﬂut BlockmgI

55

Cornus vs. 2PC Summary

Cornus
e Be 8e
Commit Q | VOTE-VES i) voTE-vES :| VOTE-YES
Case —
backto : :'l ;']
user 5
— P
8c a8e Be
P Jvoreves) ﬁj
_ i) i Jvoreves i vore-ves
Failure o ! i
fail P
tlmeout Pl
Case : L
ﬁ' VOTE-YES Non -Blocking!

VOTE-ygs ™ J

Key idea #1: No decision logging

Key idea #2: LogOnce() storage API

Enabled by storage disaggregation
through

— Highly available storage service
— Shared across compute nodes
— Rich APIs of storage service

56

Performance Evaluation (on Redis)

[Cornus (left) =3 2PC (right) Cornus reduces latency by up

[execution —J commit to 1.9x compared to 2PC
1 22 prepare (ITT1] abort

77\ 7
\PAZ) A v YA
2 4 6 8
Number of Nodes

~ O 0

NN

Latency Breakdown
(ms)

Hardware: 8 core (Intel Xeon 8272CL x 8), 64 GB DRAM
Workload: 10GB YCSB data set, 16 accesses per txn, reads/updates = 50/50, no skew
Storage service: Premium P4 Redis instance on Azure. One master node + one slave node.

Further Optimizations

...... step1 .. e, Step 1
CPUCPU {EE CPUCPU {EE
...... top 4 top 2T
s °P step 2 ﬂ- ﬁstep 3 steN ﬂ- ﬂ step 3
Prepare in Cornus Optimization #1

Optimization #1: Storage service responds to both the requesting
participant and coordinator

— Save one network hop
— Requires changes in storage API

58

Further Optimizations

(S Be Be @S Be Bs
~S—— . f
;JEVOTE'YES Jvoreves) vore-ves B ' | voTe-ves
Q back to : :I *:l Q back to : :l
user i - user
Baseline Cornus Optimization #2

Optimization #2: Storage service responds to coordinator and all
participants

— Save one more network hot

— Incurs more network traffic

— Requires changes in storage API

59

Further Optimizations

Protocol #RTT Extra Requirements

2PC 3+2=5 -

Cornus 3+0=3 Storage supports conditional write
Cornus (opt- 2.5+0=2.5 Leader of Paxos can forward a mes-
mization) sage to coordinator

2PC (co- 2+1=3 Participant coordinates replication
location

Cornus (co- 2+0=2 Participant coordinates replication
location)

Paxos Com- 1.5+0=1.5 Participant coordinates replication;

mit / MDCC- Acceptors forward messages to co-

Classic ordinator to learn from quorum
Table 3: Time complexity for protocols integrating with Paxos
or its variations

Further optimizations require
the codesign of 2PC and
consensus

60

Check out Our VLDB’22 Paper

Cornus: Atomic Commit for a Cloud DBMS with
Storage Disaggregation

Zhihan Guo
Xinyu Zeng
Kan Wu
University of Wisconsin-Madison
{zhihan,xinyu kanwu}@cs.wisc.edu

Mahesh Balakrishnan
Confluent, Inc.
mbalakrishnan@confluent.io

ABSTRACT
Two-phase commit (2PC) is widely used in distributed databases
to ensure atomicity of distributed transactions. Conventional 2PC
was originally designed for the shared-nothing archi and
has two limitations: long latency due to two eager log writes on the
critical path, and blocking of progress when a coordinator fails.
Modern cloud-native databases are moving to a storage disag-
gregation architecture where storage is a shared highly-available
service. Our key observation is that disaggregated storage enables
protocol innovations that can address both the long-latency and
blocking problems. We develop Cornus, an optimized 2PC protocol
to achieve this goal. The only extra functionality Cornus requires is
an atomic compare-and-swap capability in the storage layer, which
many existing storage services already support. We present Cornus
in detail and show how it addresses the two limitations. We also
deploy it on real storage services including Azure Blob Storage and
Redis. Empirical evaluations show that Cornus can achieve up to
1.9% latency reduction over conventional 2PC.

PVLDB Reference Format:
Zhihan Guo, Xinyu Zeng, Kan Wy, Wuh-Chwen Hwang, Ziwei Ren,
Xiangyao Yu, Mahesh Balakrishnan, Philip A. Bernstein. Cornus: Atomic
Commit for a Cloud DBMS with Storage Disaggregation. PVLDB, 16(2): 379
- 392, 2022.

doi:10.14778/3565816.3565837

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
htps://github.com/CloudOLTP/Cornus.

1 INTRODUCTION

Databases are migrating to the cloud because of desirable features
such as elasticity, high availability, and cost competitiveness. Mod-
ern cloud-native datab feature a st di: ion archi-
tecture where the storage is decoupled from computation as a

‘This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit i d/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565837

Wuh-Chwen Hwang
Ziwei Ren
Xiangyao Yu
University of Wisconsin-Madison
{wuh-chwen,ziwei,yxy}@cs.wisc.edu

Philip A. Bernstein
Microsoft Research
philbe@microsoft.com

[haw]

8= e 8=
=Sl e e
(a) Shared-nothing (b) Storage-disaggregation

Figure 1: Shared-Nothing vs. Storage-Disaggregation.

standalone service as shown in Figure 1b. This architecture allows
independent scaling and billing of computation and storage, which
can improve resource utilization, reduce operational cost, and en-
able flexible cloud deploy with i
Many cloud-native database systems adopt such an architecture for
both OLTP [21, 49, 62, 67] and OLAP [14-16, 23, 30, 60]. Nowadays,
as storage services offer essential functions such as fault tolerance,
scalability, and security at low-cost, systems start to layer their
designs on the existing disaggregated storage services [22, 26].

This paper focuses on efficient deployment of the two-phase
commit protocol on existing storage services. Two-phase commit
(2PC) is the most widely used atomic commit protocol, which en-
sures that distributed transactions commit in either all or none
of the involved data partitions. 2PC was originally designed for
the shared-nothing architecture and suffers from two major prob-
lems. The first is long latency: 2PC requires two round-trip network
messages and associated logging operations. Previous work has
demonstrated that the majority of a transaction’s execution time
can be attributed to 2PC [19, 20, 32, 42, 50, 52, 64]. The second
problem is blocking [24, 25, 53]. Blocking occurs if a coordinator
crashes before notifying participants of the final decision. These
two problems greatly limit the performance of 2PC, especially in a
storage disaggregation architecture

Various techniques have been proposed to address these two
problems with 2PC. Some proposed optimizations target the shared-
nothing architecture and do not solve both problems simultane-
ously. These protocols either reduce latency by making strong
assumptions about the workload and/or system that are not always
practical for disaggregated storage [18-20, 25, 45, 46, 55, 56], or
they mitigate the blocking problem by adding an extra phase and

Pseudo-code of Cornus
Analysis of failure and recovery
Proof of correctness

eployment over Redis and Azure

blob store

ore performance evaluation

Q/A — Cornus

What implementation of 2PC used for comparison?

Cornus on a shared-nothing architecture?

Consensus algorithm like Paxos or Raft used for replication?
Completely decouple compute sharding from storage sharding?

In storage disaggregation, any strength to partition keys? Why not to
run one transaction only in one node?

Consistency required from underlying storage service?
How does storage implement compare-and-swap?

62

Next Lecture

Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database.
VLDB, 2020

63

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aria.pdf

