
Xiangyao Yu
11/16/2022

CS 764: Topics in Database Management Systems
Lecture 21: Cornus

1

Today’s Paper: Cornus

VLDB 2022 2

Announcement

3

No lecture on Wednesday next week
Optional 10-min meeting to discuss your project with instructor
Signup sheet (access using your UW account)

– https://docs.google.com/spreadsheets/d/1HatkCJkKUD8ZI0zVe_xZ9Oxhfthr
Y6YAgiI9NX8uS9g/edit?usp=sharing

Meetings over zoom
– https://uwmadison.zoom.us/j/92584913804?pwd=NVdON0VjcWJLOTVwVk9

UNzdRSURyZz09

https://docs.google.com/spreadsheets/d/1HatkCJkKUD8ZI0zVe_xZ9OxhfthrY6YAgiI9NX8uS9g/edit?usp=sharing
https://uwmadison.zoom.us/j/92584913804?pwd=NVdON0VjcWJLOTVwVk9UNzdRSURyZz09

Outline
Cloud database
Storage disaggregation
Cornus protocol

4

According to Gartner Report [1]
$39.2 billion, 49% of all DBMS revenue from cloud in 2021

Databases Moving to the Cloud

Cloud vs. On-premises Revenue

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/ 5

Cloud database
$39.2B in 2021

On-prem database
$40.8B in 2021

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

According to Gartner Report [1]
$39.2 billion, 49% of all DBMS revenue from cloud in 2021

Databases Moving to the Cloud

Cloud vs. On-premises Revenue

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/ 6

Cloud database
$39.2B in 2021

On-prem database
$40.8B in 2021

Low Cost

Elasticity

Availability

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

Databases Moving to the Cloud

7

Transactional DB Analytical DB

Cloud DB: Storage-Disaggregation

8

Database states (e.g., tables and logs)
in cloud storage service

Compute cluster

Storage as a Service (SaaS)

Database logic in computer cluster

Data Center Network

Manage computation and storage as separate services

Cloud DB: Storage-Disaggregation

9

Database states (e.g., tables and logs)
in cloud storage service

Compute cluster

Storage as a Service (SaaS)

Database logic in computer cluster

Data Center Network

Manage computation and storage as separate services

Increasing network speed

Advantages of Storage-Disaggregation

10

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #1: Elasticity
• Compute and storage resources can

scale independently

Advantages of Storage-Disaggregation

11

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #1: Elasticity
• Compute and storage resources can

scale independently

Network Network

Compute
nodes

Storage
nodes

Storage-intensive
workload

Compute-intensive
workload

Advantages of Storage-Disaggregation

12

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper

than compute servers

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Advantages of Storage-Disaggregation

13

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper

than compute servers

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time

Load

Advantages of Storage-Disaggregation

14

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper

than compute servers

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time

Load Cost of previsioning for peak

Advantages of Storage-Disaggregation

15

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper

than compute servers

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time

Load Cost of previsioning for peak

Cost of elastic
previsioning

Advantages of Storage-Disaggregation

16

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper

than compute servers

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time

Load Cost of previsioning for peak

Cost of elastic
previsioning

No compute cost at zero load

Advantages of Storage-Disaggregation

17

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #3: Availability
• Storage service provides high availability

through geo-replication
• Simplifies fault tolerance in DB

Advantages of Storage-Disaggregation

18

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #3: Availability
• Storage service provides high availability

through geo-replication
• Simplifies fault tolerance in DB

Storage-disaggregation architecture
widely deployed in cloud databases

Storage-Disaggregation vs. Shared Disk

The storage service can scale horizontally, has built-in high
availability, and has richer APIs

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Compute cluster

Shared storage devices

Data Center Network

Distributed Atomic Commitment
Data partitioned across machines

20

Partition 1 Partition 2 Partition 3

Distributed Atomic Commitment
Data partitioned across machines

A transaction updates data across
multiple partitions

21

Partition 1 Partition 2 Partition 3

write(A) write(B) write(C)
Transaction

Distributed Atomic Commitment
Data partitioned across machines

A transaction updates data across
multiple partitions

Atomic commitment requires the
transaction to commit in all or none of
the involved partitions

22

Partition 1 Partition 2 Partition 3

write(A) write(B) write(C)
Transaction

Distributed Atomic Commitment
With storage disaggregation, log files
locate in the storage service

23

Storage service

write(A) write(B) write(C)
Transaction

Two-Phase Commit (2PC)
Coordinator initiates the 2PC protocol

The example assumes a committing
transaction

24

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

Two-Phase Commit (2PC)
Coordinator initiates the 2PC protocol

25

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

Two-Phase Commit (2PC)
Each participant appends VOTE-YES
to local log file

– Promise not to unilaterally abort

26

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

Two-Phase Commit (2PC)
Participants reply votes to coordinator

27

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

Two-Phase Commit (2PC)
Coordinator logs the final decision (e.g.,
COMMIT or ABORT)

The decision log record is the ground
truth of the transaction outcome

28

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

Two-Phase Commit (2PC)
Reply to user after writing the decision
log record

29

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Two-Phase Commit (2PC)
Coordinator sends the final decision to
all participants

30

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Two-Phase Commit (2PC)
Coordinator sends the final decision to
all participants

Participants log the decision
– For independent recovery upon failure

31

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Limitations of 2PC
Limitation #1: Long latency

– User experiences latency of two logging
operations

32

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Limitations of 2PC
Limitation #1: Long latency

– User experiences latency of two logging
operations

Limitation #2: Blocking problem
– Participants are blocked if the coordinator

fails

33

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

fail
Block until
coordinator
recovers!

timeout
contact coordinator

timeout

timeout timeout
contact coordinator

2PC Limitations – Prior Solutions

34

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

Solutions

Reduce latency

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Limitations in prior solutions
• Extra system or workload

assumptions
• Violate site autonomy

2PC Limitations – Prior Solutions

35

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990
[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

Solutions

Reduce latency

Non-blocking

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Limitations in prior solutions
• Extra system or workload

assumptions
• Violate site autonomy

• Requires extra latency and/or
network messages

2PC Limitations – Prior Solutions

36

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990
[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981
[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006
[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013
[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020
[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018

Solutions

Reduce latency

Non-blocking

Codesign 2PC
with replication

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]
MDCC [6]
Parallel commit [7]
TAPIR [8]

Limitations in prior solutions
• Extra system or workload

assumptions
• Violate site autonomy

• Requires extra latency and/or
network messages

• Extra design complexity
• Custom-designed consensus protocol

2PC Limitations – Prior Solutions

37

Solutions

Reduce latency

Non-blocking

Codesign 2PC
with replication

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]
MDCC [6]
Parallel commit [7]
Tapir [8]

Limitations in prior solutions
• Extra system or workload

assumptions
• Violate site autonomy

• Requires extra latency and/or
network messages

• Extra design complexity
• Custom-designed consensus protocol

Research Question: What is the minimal requirement from the
storage service to enable 2PC optimizations addressing high
latency and blocking?

Cornus Overview
An optimized two-phase commit protocol for a cloud database with
storage disaggregation

38

Cornus Overview
An optimized two-phase commit protocol for a cloud database with
storage disaggregation

39

2PC Limitation 1: Long latency
ÞCornus reduces 2 logging events to 1 logging event

2PC Limitation #2: Blocking problem
ÞCornus is non-blocking

Cornus Overview
An optimized two-phase commit protocol for a cloud database with
storage disaggregation

Only new storage-layer function is LogOnce() which can be
implemented using compare-and-swap

40

2PC Limitation 1: Long latency
ÞCornus reduces 2 logging events to 1 logging events

2PC Limitation #2: Blocking problem
ÞCornus is non-blocking

Cornus Key Ideas
Key idea #1: Remove decision logging

41

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Cornus Key Ideas
Key idea #1: Remove decision logging

Ground truth: collective votes in all
participants logs

– Uncertain node can directly read all votes

42

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Cornus Key Ideas
Key idea #1: Remove decision logging

Ground truth: collective votes in all
participants logs

– Uncertain node can directly read all votes

43

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Enabled by storage disaggregation
through

– Highly available storage service
– Shared across compute nodes

Cornus Key Ideas
Key idea #2: LogOnce() storage API

44

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Cornus Key Ideas

45

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Key idea #2: LogOnce() storage API

Avoid blocking by directly updating log
files of unresponsive nodes

– Only first LogOnce() request can succeed

Cornus Key Ideas

46

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Key idea #2: LogOnce() storage API

Avoid blocking by directly updating log
files of unresponsive nodes

– Only first LogOnce() request can succeed

LogOnce() can be implemented using
CAS-like APIs (e.g., Etags)

Cornus Key Ideas

47

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to
user

Key idea #2: LogOnce() storage API

Enabled by storage disaggregation
through

– Rich APIs of storage service

Cornus Failure Example
Coordinator fails

48

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

Cornus Failure Example
Coordinator fails

Timeout in participant 1 waiting for
coordinator’s message

49

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout

Cornus Failure Example
Use LogOnce() to write ABORT to other
nodes’ log files

50

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout

Cornus Failure Example
Use LogOnce() to write ABORT to other
nodes’ log files

VOTE-YES already exists, LogOnce()
does not modify log content

51

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout

Cornus Failure Example
Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

52

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

timeout

VOTE-YES VOTE-YES

fail

Cornus Failure Example
Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

Same process can happen for other
participants (e.g., Participant 2)

53

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

timeout

VOTE-YES VOTE-YES

fail

Cornus vs. 2PC Summary

54

Commit
Case

VOTE-YESVOTE-YESVOTE-YES

back to
user

Two-Phase CommitCornus

VOTE-YESVOTE-YESVOTE-YES

back to
user

Cornus vs. 2PC Summary

55

Commit
Case

Failure
Case

VOTE-YESVOTE-YESVOTE-YES

back to
user

Two-Phase CommitCornus

VOTE-YESVOTE-YESVOTE-YES

back to
user

VOTE-
YES

VOTE-YESVOTE-YES

fail

Blocking!
timeout timeout

timeout timeout

VOTE-YESVOTE-YESVOTE-YES

fail
timeout

VOTE-YESVOTE-YES Non-Blocking!

Cornus vs. 2PC Summary

56

Commit
Case

Failure
Case

Cornus

VOTE-YESVOTE-YESVOTE-YES

back to
user

VOTE-YESVOTE-YESVOTE-YES

fail
timeout

VOTE-YESVOTE-YES Non-Blocking!

Key idea #1: No decision logging
Key idea #2: LogOnce() storage API

Enabled by storage disaggregation
through

– Highly available storage service
– Shared across compute nodes
– Rich APIs of storage service

Performance Evaluation (on Redis)

Hardware: 8 core (Intel Xeon 8272CL × 8), 64 GB DRAM
Workload: 10GB YCSB data set, 16 accesses per txn, reads/updates = 50/50, no skew
Storage service: Premium P4 Redis instance on Azure. One master node + one slave node.

Cornus reduces latency by up
to 1.9× compared to 2PC

Further Optimizations

Optimization #1: Storage service responds to both the requesting
participant and coordinator

– Save one network hop
– Requires changes in storage API

58

step 1

Prepare in Cornus Optimization #1

step 4
step 2 step 3

step 1

step 2
step 3step 3

Further Optimizations

Optimization #2: Storage service responds to coordinator and all
participants

– Save one more network hot
– Incurs more network traffic
– Requires changes in storage API

59

VOTE-YESVOTE-YESVOTE-YES

back to
user

VOTE-YESVOTE-YESVOTE-YES

back to
user

Baseline Cornus Optimization #2

Further Optimizations
Further optimizations require
the codesign of 2PC and
consensus

60

Check out Our VLDB’22 Paper
• Pseudo-code of Cornus
• Analysis of failure and recovery
• Proof of correctness
• Deployment over Redis and Azure

blob store
• More performance evaluation

Q/A – Cornus

62

What implementation of 2PC used for comparison?
Cornus on a shared-nothing architecture?
Consensus algorithm like Paxos or Raft used for replication?
Completely decouple compute sharding from storage sharding?
In storage disaggregation, any strength to partition keys? Why not to
run one transaction only in one node?
Consistency required from underlying storage service?
How does storage implement compare-and-swap?

Next Lecture
Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database.
VLDB, 2020

63

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aria.pdf

