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Today’s Paper: Cornus

VLDB 2022 2



Announcement

3

No lecture on Wednesday next week
Optional 10-min meeting to discuss your project with instructor
Signup sheet (access using your UW account) 

– https://docs.google.com/spreadsheets/d/1HatkCJkKUD8ZI0zVe_xZ9Oxhfthr
Y6YAgiI9NX8uS9g/edit?usp=sharing

Meetings over zoom
– https://uwmadison.zoom.us/j/92584913804?pwd=NVdON0VjcWJLOTVwVk9

UNzdRSURyZz09

https://docs.google.com/spreadsheets/d/1HatkCJkKUD8ZI0zVe_xZ9OxhfthrY6YAgiI9NX8uS9g/edit?usp=sharing
https://uwmadison.zoom.us/j/92584913804?pwd=NVdON0VjcWJLOTVwVk9UNzdRSURyZz09


Outline
Cloud database
Storage disaggregation
Cornus protocol 

4



According to Gartner Report [1]
$39.2 billion, 49% of all DBMS revenue from cloud in 2021

Databases Moving to the Cloud

Cloud vs. On-premises Revenue

[1] DBMS Market Transformation 2021: The Big Picture, https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/ 5

Cloud database
$39.2B in 2021

On-prem database
$40.8B in 2021

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/
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Cloud database
$39.2B in 2021

On-prem database
$40.8B in 2021

Low Cost

Elasticity

Availability

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/


Databases Moving to the Cloud
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Transactional DB Analytical DB



Cloud DB: Storage-Disaggregation
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Database states (e.g., tables and logs)
in cloud storage service

Compute cluster

Storage as a Service (SaaS)

Database logic in computer cluster

Data Center Network

Manage computation and storage as separate services 



Cloud DB: Storage-Disaggregation
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Database states (e.g., tables and logs)
in cloud storage service

Compute cluster

Storage as a Service (SaaS)

Database logic in computer cluster

Data Center Network

Manage computation and storage as separate services 

Increasing network speed



Advantages of Storage-Disaggregation
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #1: Elasticity 
• Compute and storage resources can 

scale independently 
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #1: Elasticity 
• Compute and storage resources can 

scale independently 

Network Network

Compute 
nodes

Storage
nodes

Storage-intensive
workload

Compute-intensive
workload



Advantages of Storage-Disaggregation
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper 

than compute servers 

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper 

than compute servers 

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time
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Advantages of Storage-Disaggregation
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #2: Low Cost
• Storage service can be much cheaper 

than compute servers 

S3 storage price $0.02 per GB per month
16 vCPU Virtual Machine $0.5 per hour per VM

Time

Load Cost of previsioning for peak

Cost of elastic 
previsioning

No compute cost at zero load



Advantages of Storage-Disaggregation
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #3: Availability 
• Storage service provides high availability 

through geo-replication
• Simplifies fault tolerance in DB



Advantages of Storage-Disaggregation
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Compute cluster

Storage as a Service (SaaS)

Data Center Network

Advantage #3: Availability 
• Storage service provides high availability 

through geo-replication
• Simplifies fault tolerance in DB

Storage-disaggregation architecture 
widely deployed in cloud databases



Storage-Disaggregation vs. Shared Disk

The storage service can scale horizontally, has built-in high 
availability, and has richer APIs

Compute cluster

Storage as a Service (SaaS)

Data Center Network

Compute cluster

Shared storage devices

Data Center Network



Distributed Atomic Commitment
Data partitioned across machines
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Distributed Atomic Commitment
Data partitioned across machines

A transaction updates data across 
multiple partitions
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Transaction



Distributed Atomic Commitment
Data partitioned across machines

A transaction updates data across 
multiple partitions

Atomic commitment requires the 
transaction to commit in all or none of 
the involved partitions

22

Partition 1 Partition 2 Partition 3

write(A) write(B) write(C)
Transaction



Distributed Atomic Commitment
With storage disaggregation, log files 
locate in the storage service
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Storage service

write(A) write(B) write(C)
Transaction



Two-Phase Commit (2PC)
Coordinator initiates the 2PC protocol

The example assumes a committing 
transaction 

24

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2



Two-Phase Commit (2PC)
Coordinator initiates the 2PC protocol
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2



Two-Phase Commit (2PC)
Each participant appends VOTE-YES
to local log file 

– Promise not to unilaterally abort
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES



Two-Phase Commit (2PC)
Participants reply votes to coordinator
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES



Two-Phase Commit (2PC)
Coordinator logs the final decision (e.g., 
COMMIT or ABORT) 

The decision log record is the ground 
truth of the transaction outcome
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES



Two-Phase Commit (2PC)
Reply to user after writing the decision 
log record

29

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Two-Phase Commit (2PC)
Coordinator sends the final decision to 
all participants

30

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Two-Phase Commit (2PC)
Coordinator sends the final decision to 
all participants

Participants log the decision 
– For independent recovery upon failure
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Limitations of 2PC
Limitation #1: Long latency

– User experiences latency of two logging 
operations

32

write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Limitations of 2PC
Limitation #1: Long latency

– User experiences latency of two logging 
operations

Limitation #2: Blocking problem
– Participants are blocked if the coordinator 

fails 
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

fail
Block until 
coordinator 
recovers!

timeout
contact coordinator

timeout

timeout timeout
contact coordinator



2PC Limitations – Prior Solutions
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[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

Solutions 

Reduce latency

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Limitations in prior solutions
• Extra system or workload 

assumptions
• Violate site autonomy 
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[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990
[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

Solutions 

Reduce latency

Non-blocking

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Limitations in prior solutions
• Extra system or workload 

assumptions
• Violate site autonomy 

• Requires extra latency and/or 
network messages 



2PC Limitations – Prior Solutions
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[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993
[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995
[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990
[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981
[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006
[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013
[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020
[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018

Solutions 

Reduce latency

Non-blocking

Codesign 2PC 
with replication

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]
MDCC [6]
Parallel commit [7]
TAPIR [8] 

Limitations in prior solutions
• Extra system or workload 

assumptions
• Violate site autonomy 

• Requires extra latency and/or 
network messages 

• Extra design complexity 
• Custom-designed consensus protocol 



2PC Limitations – Prior Solutions
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Solutions 

Reduce latency

Non-blocking

Codesign 2PC 
with replication

Example systems
Coordinator log [1]
Implicit yes vote [2]
Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]
MDCC [6]
Parallel commit [7]
Tapir [8] 

Limitations in prior solutions
• Extra system or workload 

assumptions
• Violate site autonomy 

• Requires extra latency and/or 
network messages 

• Extra design complexity 
• Custom-designed consensus protocol 

Research Question: What is the minimal requirement from the 
storage service to enable 2PC optimizations addressing high 
latency and blocking? 



Cornus Overview
An optimized two-phase commit protocol for a cloud database with 
storage disaggregation 
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Cornus Overview
An optimized two-phase commit protocol for a cloud database with 
storage disaggregation 
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2PC Limitation 1: Long latency 
ÞCornus reduces 2 logging events to 1 logging event 

2PC Limitation #2: Blocking problem
ÞCornus is non-blocking



Cornus Overview
An optimized two-phase commit protocol for a cloud database with 
storage disaggregation 

Only new storage-layer function is LogOnce() which can be 
implemented using compare-and-swap

40

2PC Limitation 1: Long latency 
ÞCornus reduces 2 logging events to 1 logging events 

2PC Limitation #2: Blocking problem
ÞCornus is non-blocking



Cornus Key Ideas
Key idea #1: Remove decision logging 
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Cornus Key Ideas
Key idea #1: Remove decision logging 

Ground truth: collective votes in all 
participants logs 

– Uncertain node can directly read all votes
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Cornus Key Ideas
Key idea #1: Remove decision logging 

Ground truth: collective votes in all 
participants logs 

– Uncertain node can directly read all votes
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Enabled by storage disaggregation 
through 

– Highly available storage service 
– Shared across compute nodes



Cornus Key Ideas
Key idea #2: LogOnce() storage API 
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Cornus Key Ideas
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Key idea #2: LogOnce() storage API 

Avoid blocking by directly updating log 
files of unresponsive nodes

– Only first LogOnce() request can succeed 



Cornus Key Ideas
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Key idea #2: LogOnce() storage API 

Avoid blocking by directly updating log 
files of unresponsive nodes

– Only first LogOnce() request can succeed 

LogOnce() can be implemented using 
CAS-like APIs (e.g., Etags)



Cornus Key Ideas
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Key idea #2: LogOnce() storage API 

Enabled by storage disaggregation 
through 

– Rich APIs of storage service



Cornus Failure Example
Coordinator fails 
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail



Cornus Failure Example
Coordinator fails 

Timeout in participant 1 waiting for 
coordinator’s message
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout



Cornus Failure Example
Use LogOnce() to write ABORT to other 
nodes’ log files
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout



Cornus Failure Example
Use LogOnce() to write ABORT to other 
nodes’ log files

VOTE-YES already exists, LogOnce() 
does not modify log content
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES
fail

timeout



Cornus Failure Example
Storage service returns VOTE-YES 
without updating the logs

Participant 1 logs the COMMIT decision 
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

timeout

VOTE-YES VOTE-YES

fail



Cornus Failure Example
Storage service returns VOTE-YES 
without updating the logs

Participant 1 logs the COMMIT decision 

Same process can happen for other 
participants (e.g., Participant 2)
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write(A) write(B) write(C)
Transaction

Coordinator Participant 1 Participant 2

VOTE-YESVOTE-YESVOTE-YES

timeout

VOTE-YES VOTE-YES

fail



Cornus vs. 2PC Summary 
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Commit 
Case

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Two-Phase CommitCornus

VOTE-YESVOTE-YESVOTE-YES

back to 
user



Cornus vs. 2PC Summary 
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Commit 
Case

Failure
Case

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Two-Phase CommitCornus

VOTE-YESVOTE-YESVOTE-YES

back to 
user

VOTE-
YES

VOTE-YESVOTE-YES

fail

Blocking!
timeout timeout

timeout timeout

VOTE-YESVOTE-YESVOTE-YES

fail
timeout

VOTE-YESVOTE-YES Non-Blocking!



Cornus vs. 2PC Summary 
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Commit 
Case

Failure
Case

Cornus

VOTE-YESVOTE-YESVOTE-YES

back to 
user

VOTE-YESVOTE-YESVOTE-YES

fail
timeout

VOTE-YESVOTE-YES Non-Blocking!

Key idea #1: No decision logging 
Key idea #2: LogOnce() storage API 

Enabled by storage disaggregation 
through 

– Highly available storage service 
– Shared across compute nodes
– Rich APIs of storage service



Performance Evaluation (on Redis) 

Hardware: 8 core (Intel Xeon 8272CL × 8), 64 GB DRAM
Workload: 10GB YCSB data set, 16 accesses per txn, reads/updates = 50/50, no skew
Storage service: Premium P4 Redis instance on Azure. One master node + one slave node.

Cornus reduces latency by up 
to 1.9× compared to 2PC



Further Optimizations

Optimization #1: Storage service responds to both the requesting 
participant and coordinator

– Save one network hop 
– Requires changes in storage API 
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step 1

Prepare in Cornus Optimization #1

step 4
step 2 step 3

step 1

step 2
step 3step 3



Further Optimizations

Optimization #2: Storage service responds to coordinator and all 
participants 

– Save one more network hot 
– Incurs more network traffic 
– Requires changes in storage API 
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VOTE-YESVOTE-YESVOTE-YES

back to 
user

VOTE-YESVOTE-YESVOTE-YES

back to 
user

Baseline Cornus Optimization #2



Further Optimizations
Further optimizations require 
the codesign of 2PC and 
consensus
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Check out Our VLDB’22 Paper
• Pseudo-code of Cornus
• Analysis of failure and recovery 
• Proof of correctness 
• Deployment over Redis and Azure 

blob store
• More performance evaluation 



Q/A – Cornus
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What implementation of 2PC used for comparison? 
Cornus on a shared-nothing architecture? 
Consensus algorithm like Paxos or Raft used for replication? 
Completely decouple compute sharding from storage sharding? 
In storage disaggregation, any strength to partition keys? Why not to 
run one transaction only in one node? 
Consistency required from underlying storage service?
How does storage implement compare-and-swap? 



Next Lecture
Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database. 
VLDB, 2020
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https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aria.pdf

