WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 24: Amazon Aurora

Xiangyao Yu
11/28/2022

Announcement

Project report (DDL: Dec. 19)
— Sample reports available from the course website
— 57 pages sufficient. Content is more important than length
— Submit to the Hotcrp website (like the proposal)

Today’s Paper

Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, Xiaofeng Bao

Amazon Web Services

ABSTRACT .
Amazon Aurora is a relational database service for Amazon Aurora development team wins the 2019 ACM

workloads offered as part of Amazon Web Services (AW SlGMOD Systems Award*

this paper, we describe the architecture of Aurora and the d

considerations leading to that architecture. We believe the ¢ By Werner Vogels on 04 July 2019 10:00 AM | Permalink | Comments (2)
constraint in high throughput data processing has moved
compute and storage to the network. Aurora brings a
architecture to the relational database to address this cons

most notably by pushing redo processing to a multi-tenant s s I G M XD /

out storage service, purpose-built for Aurora. We describe
doing so not only reduces network traffic, but also allows fo A M S Px D s
crash recovery, failovers to replicas without loss of data,

fault-tolerant, self-healing storage. We then describe how A T E R

achieves consensus on durable state across numerous st D A M 2x 19
SIGMOD 2017

Cloud Database Architecture

CPU CPU CPU CcPU cPU o
Mem Mem Mem
Mem Mem Mem Network

O 101010
- FEEE-
HDD HDD HDD HDD

On-premises Cloud
* Fixed and limited hardware Virtually infinite computation & storage,
resources Pay-as-you-go price model
« Shared-nothing architecture » Disaggregation architecture

Storage-Disaggregation Architecture

CPU CPU CPU
Mem Mem Mem
Network

o010
') (O (3 (=-
- -

Feature 1: Computation and storage layers are disaggregated
« Autoscaling computation and storage nodes

Feature 2: Limited computation can happen in the storage layer
REDO processing

Disadvantage: Network bottleneck
« Lower bandwidth and higher latency

Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?
« Concurrency control
Indexing
Buffer manager

Logging

Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?

« Concurrency control
* Indexing
« Buffer manager

* Logging

Amazon
Aurora

Push redo processing into the

storage service

Data Plane

N—

SQL

Transactions

/

Sy

Caching

-

Oo0B0o
Logging + Storage

l

Amazon S3

Control Plane

Amazon
DynamoDB

E]Il

Amazon SWF
Li -

v

Aurora — Single Master

Amazon Aurora DB Cluster

Availability Zone a

..

M Instance

Availability Zone b

- Aurora
B Replica

Data Copies

Cluster Volume

Availability Zone ¢

- Aurora -

Replicas

Data Copies

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

Copy 1 Copy2 Copy3

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

Copy 1 Copy2 Copy3

For three copies
VvV, =2
V, =2

10

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

For three copies
VvV, =2
V, =2

For six copies
vV, =4
V, =3
11

3-Way Replication

AZ A AZ B AZ C
Copy 2 Copy 3

AZ: Availability zone
« AZs fail independently

Data is una_vailable _if one AZ is unavailable and one
other copy Is unavailable

6-Way Replication

AZ A AZ B AZ C
Copies 3, 4 Copies 5, 6

Can read if one AZ fails and one more node fails (AZ+1)
« Allow to rebuild a write quorum by adding additional replica

Can write if one AZ fails

Segmented Storage

Availability is determined by
« MTTF: Mean time to failure
« MTTR: Mean time to repair

Maximize availability
=> Minimize MTTR (MTTF is hard to reduce)

Segment: 10 GB block. Basic unit of failure and repair
Protection Group (PG): Six replication copies of a segment

14

Network 10 in MySQL

AZ 1 @ AZ 2]
..................... IO traffIC
pimay | ee—]- | RIS » REDO Log
................ — + Binary log
« Data

 Double-write
 metadata (FRM)

Amazon Elastic
Block Store (EBS)

k] Latency
Amazon S3 * StepS 1, 3, and 5 are
T EOrmaLIR sequential and synchronous
LOG BINLOG - DATA

- DOUBLE-WRITE » FRMFILES 15

Binary Log vs. REDO Log in MySQL

Primary

Amazon Elastic
1 Block Store (EBS)

ol

! EBS miror

Amazon S3

TYPE OF WRITE

Instance ; I :

Replica
Instance

mirror

LOG BINLOG

FRMFILES

‘ DOUBLE-WRITE

DATA

1.

REDO log generated by InnoDB;
Binlog generated by MySQL and
supports other storage engines
REDO log is physical, Binlog can be
either physical or logical

A transaction writes a single Binlog
record but potentially multiple REDO
records

16

MySQL vs. Aurora

: Primary : Repl
: Instance : . : Instance :
Ama Elast
Block St S EBS

TTTTTTTTTTT

BINLOG DATA

—— FRMFILES

- DOUBLE-WRITE

MySQL: DB writes both log and data pages to storage

I I
AZ 1 | AZ 2 I AZ 3
.................. _ : TPPVUOR o v) JOPOOY
: | : : |
Primary | sl :| Replica | == Replica
Instance |- : ‘| Instance |: 7| Instance
I I
.................. : | e
ASYNC I |
4/60UORUM| |
| 1
I I
I I
1 : m : 1 1
........................... T
| DISTRIBUTED|
| WRITES |
I I
I I
I |
I I
I I
I Amazon S3 I

Aurora: DB writes only REDO log to storage
 The storage layer replays the log into data pages

17

MySQL vs. Aurora — Network 10

Table 1: Network 10s for Aurora vs MySQL

Configuration Transactions | IOs/Transaction

Mirrored MySQL 780,000 7.4
Aurora with Replicas = 27,378,000 0.95

18

Storage Node

Primary

LOG RECORDS

ACK

Instance 1
Peer
Storage ¢
Nodes

S ORT

GROUP

INCOMING QUEU

> -1

. QUEUE

STORAGE NODE

© o

GC

COALESCE DATA
E ’ a\C 0 SCRUB e

PEER TO PEER GOSSIP HOT

POINT IN TIME
SNAPSHOT

S3 BACKUP

Only Steps 1 & 2 are
in the foreground path

19

Storage Node

STORAGE NODE

Primary € ACK

Instance s

> 1 -m- I:l |dentify gaps in the log

UPDATE
QUEUE

' INCOMING QUEUE .
LOG RECORDS : “ 0 0 i
COALESCE

DATA

E } a\C 0 SCRUB

SORT .
GROUP I :
Peer PEER TO PEER. GOSSIP
Storage |4 f
Nodes ° : POINT IN TIME
1 SNAPSHOT
0O |
[S3 BACKUP]

20

Storage Node

STORAGE NODE

INCOMING QUEUE

LOG RECORDS

> -1

Primary € ACK : [
Instance : e :
: UPDATE
. QUEUE COALESCE DATA
: m 4 Paces e e
SORT a
GROUP
Peer PEER TO PEER GOSSIP. [Tl s
Storage | :
Nodes @ POINT IN TIME
SNAPSHOT

[S3 BACKUP

Gossip with peers to

fill gaps

21

Storage Node

STORAGE NODE

' INCOMING QUEUE 5
LOG RECORDS “ 0

e HGC -~ Coalesce log records

Primary € ACK
Instance

- Into data pages
< ;
DATA

Peer PEER TO PEER GOSSIP
Storage (4 :

Nodes 0

POINT IN TIME

SNAPSHOT

[S3 BACKUP]

22

Storage Node

STORAGE NODE

LOG RECORDS INCOMING QUEUE e !

P> IZl Periodically stage log

Primary € ACK
Instance

‘ e —— and pages to S3

— :
QUEUE COALESCE’

DATA
B ZXe=] SCRUB

SORT e .
GROUP I f

Peer PEER TO PEER GOSSIP
Storage (4 :
Nodes ° POINT IN TIME
SNAPSHOT
v
[S3 BACKUP]

23

Storage Node

LOG RECORDS

INCOMING QUEUE 0

> -1
Primary P ACK :
Instance : e
: UPDATE <
. QUEUE COALESCE. EHTNIY
: B > [ZXe] scrus
[]
SORT
GROUP
Peer PEER TO PEER, GOSSIP
Storage (4 :
Nodes o POINT IN TIME
SNAPSHOT
[S3 BACKUP

Periodically garbage
collect old versions
and periodically
validate CRC code on
pages

* Cyclic redundancy check (CRC) is
an error-detecting code

24

Forward Processing — Write and Commit

DB

REDO
Log
AN

N— B

Storage

SN— -

Write: flush REDO log to storage
Commit: after all the log records are properly flushed

Forward Processing — Read

~ N
N ~— I
Storage
N — I

Buffer hit: read from main memory of the DB server

26

Forward Processing — Read

DB

Storage}

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage

27

Forward Processing — Eviction

i
Aurora: MySQL.:
discard dirty evict dirty page
— page — = to storage
Storage Storage

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage

Dirty eviction: discard dirty page (no write back to storage)
* The page in storage will be updated through replaying the REDO log 28

Read from One Quorum

AZA AZB AZC

Copies 1, 2 Copies 3, 4 Copies 5, 6

Q J “
* .
Q
- o o
D * -
* *
Q S .
- . **
Q R4 .
Q - o
R \d *
. o o*
0 ° -
o
*

\d
.
.
.
*
.
.
03
o
.

Three votes to read data

The DB server knows which node contains the latest value
=> A single read from the update-to-date node

Replication

REDO Log Read

Primary

replica

REDO
Log

A

-

Storage Layer

_

If page is in replica’s local bufter, update the page
Otherwise, discard the log record

Evaluation — Aurora vs. MySQL

Writes per second

140000

120000

100000

80000

60000

40000

20000

SysBench Write Only
BMySQL 5.6 MySQL 5.7 [Amazon Aurora

=]l D%D EéH BAL

7 7
. L.
R3.large R3.xlarge R3.2xlarge R3.4xlarge R3.8xlarge
Instance Type

Reads per second

700000

600000

500000

400000

300000

200000

100000

SysBench Read Only

BMysSQL5.6

R3.large R3.xlarge R3.2xlarge

Instance Type

MySQL 5.7 [Amazon Aurora

OO

/
=l

R3.4xlarge

DO

R3.8xlarge

31

Evaluation — Varying Data Sizes

Table 2: SysBench Write-Only (writes/sec)

DB Size Amazon Aurora | MySQL
1 GB 107,000 8,400
10 GB 107,000 2,400
100 GB 101,000 1,500
1TB [41,000] 1,200

Performance drops when data does not fit in main memory

32

Evaluation — Real Customer Workloads

) 15, 15:14

Web transactions response time ~ Aurora 3X faster on r3.4xlarge

| Before : 15ms

MYSGLY | Web ext Aurora Migration

33

Evaluation — Real Customer Workloads

Kamchatka Auth Latency ms el o P -
9C

80
70

60
v/ /

.) \!\ | ’J' M
3 A A ’/« |I\J|\ —\, /\ A / \' \Jl \ "
40 [V VI va N / 4 \11‘\‘ : U -[J h\y N AYALY, \«'\
v V VY y AN\ v
3C 2
20

10

0 : ————— - - .
15:00 18:00 21:00 Wed 29 03:00 06:00 €9:00 12:00 15:00 18:00 21:00 0:00 § 03.00

. 068 Avg: 0.93 kamchatka.auth.latency_ms.med an {kinesis_streamiluigi_history)

. 14 Avg: 25.82 kamchatka.auth.latency_ms.95percentile {kinesis_stream:lulgi_history]

Figure 9: SELECT latency (P50 vs P95)

Latency per record ms s o

100

kamchatka.root_record_processor.batch.record.latency_ms.95percentile

T
18:00

06:00 12:00 18:0(Wed 29 06:00 12:0(Thu 3()60 { 0 0 16:40

. 013 Avg 0.07 kamchatka.root_record_processor.batch.record . {kinesis_stream:luigi_history}

. 1.88 Avg: 33.9 kamchatka.root_record_processor.batch.record... [kinesis_stream:luigi_history}

Figure 10: INSERT per-record latency (P50 vs P95)

Aurora Multi-Master

Database REPLICATION (redo records) Database

Node : Node
(Writer) (Writer)

AZ - Availability Zone
SN - Storage Node

Any DB instance can access any data

The storage nodes detect conflicts at page granularity
« Pushing down concurrency control to the storage layer

* https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

35

Aurora Serverless

Applications

-J J 0o
- LT
| l— o8 .---8

o5 e— @00

a8
DB DB DB
storage storage B storage

Warm pool of
Aurora Database Storage

Router fleet

DB capacity

» https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html

How does it work . . .

Get server from warm pool

Transfer buffer pool
Look for safe scale point

AWS
re: l nvent © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws
S

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

37

?

IN practice

How does it work

tps
3000

ACU

128

64

C
3
O
©
v
3
1]
(o)
v

32

=
©
=J
=)
m
b
(@)
@
e
o)
=

16

2500

\m 0L2L
09LL
0504
ov69
0¢89
0zZL9
0L99
0089
0659
0829
0419
0909
0565
0¥8S
0$LS
0295
0LSS
0ovs
0625
08LS
0£08
096
0S8Y
ovLy
0g9v
0zstY
oLvy
00y
06LY
080Y
0L6%
098¢
0SLE
ov9g

aws

2000

1500

©
4]
a0
S
n».d
_—
al
O =f
(™
-d
o

1000

v
@
v
©
@
—
o
=

0£SE
ozre
oLes
00Z%
060%
0862
0487
0942
0592
ovsZ
ogve
0cec
oLee
0oLz
0661
088L
0LLL
0991
0ssL
orvL
ogelL
0zzL
oLLL
000L
068

08L

049

09§

osv

ove

0gz

o7L

© 2018, Amazon Web Services, Inc. or its affiliates. All rights recerved.

—1 0L

re: INvent

500
0

38

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

Amazon Aurora — Q/A

Any pitfalls of this design?

Alternative DBs in industry with innovations different from Aurora?
Does Aurora support geo-replication well?

Network vs. compute vs. storage, which one is the bottleneck?

Aurora depends on MySQL and Postgres; does that hinder its
development?

How to handle case where storage node writes data but does not
replicate to other replicas?

Is S3 used as WAL in Aurora?

39

Before Next Lecture

Submit review for

« Benoit Dageville, et al., The Snowflake Elastic Data Warehouse. SIGMOD,
2016

40

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/snowflake.pdf

