
Xiangyao Yu
12/5/2022

CS 764: Topics in Database Management Systems
Lecture 26: Pushdown DBMS

1



Announcements
DAWN workshop

– Reserve a presentation slot using the following google sheet
https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu 

2

https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-cIssFrK_J1PMidaAuw/edit?usp=sharing
http://aefis.wisc.edu/


Today’s Papers

VLDB 2021ICDE 2020 3



Storage-Disaggregation Architecture
… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Features of disaggregation architecture
• Computation and storage layers are 

disaggregated
• Limited computation can happen in the 

storage layer

4



Storage-Disaggregation Architecture
… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Advantages 
• Lower management cost 
• Independent scaling of computation 

and storage

Disadvantages 
• Network becomes a bottleneck

Features of disaggregation architecture
• Computation and storage layers are 

disaggregated
• Limited computation can happen in the 

storage layer

5



How to Mitigate the Network Bottleneck? 
… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Solution 1: Move data to computation 
• Cache storage data in the computation layer
• Example: Snowflake

Solution 2: Move computation to data 
• Pushdown computation to the storage layer
• Example: PushdownDB

6



PushdownDB Architecture
CPU
Mem

Network
CPU CPU CPU CPU

Key questions to address in this project: 
• How to implement relational operators to leverage existing cloud services?
• What are the performance and cost tradeoffs?

7



PushdownDB – Building Blocks

PushdownDB implementation
– Single-node, multi-process Python-based database
– Ubuntu 16.04.5 LTS, Python version 2.7.12. 

Source code: https://github.com/yxymit/s3filter.git

CPU
Mem

Network
CPU CPU CPU CPU

EC2 (r4.8xlarge)

10 Gbit Ethernet

S3 Select

Simple Storage Service (S3)

8

https://github.com/yxymit/s3filter.git


Simple Cloud Storage (S3)

Virtually infinite storage capacity with relatively low cost

Partition input relations into multiple shards, each shard is stored as a 
separate object in S3

S3 vs. elastic block store (EBS) vs. local store
– Virtually infinite capacity, shared across all nodes, lower cost, durable

CPU
Mem

Network
CPU CPU CPU CPU

Simple Storage Service (S3)

9



S3 Select

Supports limited SQL queries on CSV and Parquet data format
– S3 Select recognizes database schema for both data formats 
– Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

CPU
Mem

Network
CPU CPU CPU CPU

10



S3 Select supports
– Filter
– Project
– Aggregate without group-by

PushdownDB – Supported Operators

PushdownDB supports
– Filter
– Project
– Top-K
– Join
– Group-by

11



Filter
Server-side filtering

– Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10

CPU
Mem

Network
CPU CPU CPU CPU

12



Filter
Server-side filtering

– Compute server loads entire table from S3 and filters locally

S3-side filtering
– Push down predicate evaluation using S3 Select

CPU
Mem

Network
CPU CPU CPU CPU

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10

13



Baseline Join
– Server loads both tables from S3 and joins locally

Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 14



Baseline Join
– Server loads both tables from S3 and joins locally

Filtered Join
– Server pushes filtering predicates to S3 to load both tables

Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 15



Bloom Join
– Step 1: Server loads the smaller table, builds a bloom filter using join key
– Step 2: Server sends the filter via S3 Select to load the bigger table
– Bloom filter is pushed down as a predicate

Join

SELECT ... 
FROM S3Object 
WHERE SUBSTRING(’1000011...111101101’, 

((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1 ) = ’1’ 

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 16



Evaluation – Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Runtime Cost Breakdown

17



Evaluation – All Operators and TPC-H

Overall, PushdownDB reduces runtime by 6.7× and reduces cost by 30%

18



Today’s Papers

VLDB 2021ICDE 2020 19



Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
– Examples: default presto, hive, SparkSQL, etc. 

…

20



Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

– Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

Local
Cache

…

Caching 
table data

…

21



Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node
Pushdown: push down selection, projection, aggregation to storage

– Examples: Redshift spectrum, Aqua, PushdownDB, etc.

Local
Cache

……

…
Caching 
table data

Pushdown results

…

22



Caching vs. Pushdown
Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size

23



Caching vs. Pushdown
Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size

A hybrid design may achieve 
the best of both worlds

24



Mitigate Network Bottleneck

Baseline (Pullup): always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node
Pushdown: push down selection, projection, aggregation to storage
Hybrid: hybrid caching and pushdown at fine granularity

Local
Cache

……

…

…

Local
Cache Merge

Caching 
table data

Pushdown results
…

…

25



FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB 26

https://github.com/cloud-olap/FlexPushdownDB


FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity
– Segment as the caching granularity

ID Age …

ID Age …

ID Age …

Employee

Partition 1

Partition 2

…

Source code: https://github.com/cloud-olap/FlexPushdownDB 27

https://github.com/cloud-olap/FlexPushdownDB


FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity
– Segment as the caching granularity

ID Age …

ID Age …

ID Age …

Employee

Partition 1

Partition 2

…

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB 28

https://github.com/cloud-olap/FlexPushdownDB


FlexPushdownDB (FPDB) Overview
Main modules

29



FlexPushdownDB (FPDB)
Separable operators

– Can execute separately using 
cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)

30



FlexPushdownDB (FPDB)
Separable operators

– Can execute separately using 
cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)

Query execution
– Heuristic: exploit caching when 

possible, otherwise pushdown as 
much as possible

31



Separable Query Plan — Example

32



Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost

33



Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority

34



Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
– Increment the frequency counter with the estimate miss cost
– Estimated miss cost = network cost + scan cost + compute cost

35



Performance Evaluation

Conclusion: FPDB outperforms baselines by 2.2x

36



Evaluation – Weighted-LFU

Weighted-LFU outperforms the baseline LFU by 37%

37



Evaluation – Resource Usage

38



Evaluation – Resource Usage

39



Pushdown DBMS – Q/A 
Why weighted LFU instead of LRU? 
Idea applied to real-world applications? 
Any drawbacks or limitations of FPDB? 
How scalable FPDB is? 
Do pushdown mechanisms work for OLTP workloads?
How to balance the tradeoff between storage-layer computation 
cost network reduction? 
How to adapt query optimizer to different pushdown layers
What operators to push down vs. stay in compute nodes?

40



Next Lecture
Anil Shanbhag, et al., A Study of the Fundamental Performance 
Characteristics of GPUs and CPUs for Database Analytics. SIGMOD, 
2020

Submit course evaluation on aefis.wisc.edu 

41

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/crystal-gpu.pdf
http://aefis.wisc.edu/

