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Announcements
DAWN workshop

– Reserve a presentation slot using the following google sheet
https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu 
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Storage-Disaggregation Architecture
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Features of disaggregation architecture
• Computation and storage layers are 

disaggregated
• Limited computation can happen in the 

storage layer
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Storage-Disaggregation Architecture
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Advantages 
• Lower management cost 
• Independent scaling of computation 

and storage

Disadvantages 
• Network becomes a bottleneck

Features of disaggregation architecture
• Computation and storage layers are 

disaggregated
• Limited computation can happen in the 

storage layer
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How to Mitigate the Network Bottleneck? 
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Solution 1: Move data to computation 
• Cache storage data in the computation layer
• Example: Snowflake

Solution 2: Move computation to data 
• Pushdown computation to the storage layer
• Example: PushdownDB
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PushdownDB Architecture
CPU
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Key questions to address in this project: 
• How to implement relational operators to leverage existing cloud services?
• What are the performance and cost tradeoffs?
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PushdownDB – Building Blocks

PushdownDB implementation
– Single-node, multi-process Python-based database
– Ubuntu 16.04.5 LTS, Python version 2.7.12. 

Source code: https://github.com/yxymit/s3filter.git

CPU
Mem

Network
CPU CPU CPU CPU

EC2 (r4.8xlarge)

10 Gbit Ethernet

S3 Select

Simple Storage Service (S3)
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Simple Cloud Storage (S3)

Virtually infinite storage capacity with relatively low cost

Partition input relations into multiple shards, each shard is stored as a 
separate object in S3

S3 vs. elastic block store (EBS) vs. local store
– Virtually infinite capacity, shared across all nodes, lower cost, durable
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Simple Storage Service (S3)
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S3 Select

Supports limited SQL queries on CSV and Parquet data format
– S3 Select recognizes database schema for both data formats 
– Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)
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S3 Select supports
– Filter
– Project
– Aggregate without group-by

PushdownDB – Supported Operators

PushdownDB supports
– Filter
– Project
– Top-K
– Join
– Group-by
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Filter
Server-side filtering

– Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10
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Filter
Server-side filtering

– Compute server loads entire table from S3 and filters locally

S3-side filtering
– Push down predicate evaluation using S3 Select
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Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10
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Baseline Join
– Server loads both tables from S3 and joins locally

Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 14



Baseline Join
– Server loads both tables from S3 and joins locally

Filtered Join
– Server pushes filtering predicates to S3 to load both tables

Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 15



Bloom Join
– Step 1: Server loads the smaller table, builds a bloom filter using join key
– Step 2: Server sends the filter via S3 Select to load the bigger table
– Bloom filter is pushed down as a predicate

Join

SELECT ... 
FROM S3Object 
WHERE SUBSTRING(’1000011...111101101’, 

((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1 ) = ’1’ 

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate 16



Evaluation – Join

SELECT SUM(O_TOTALPRICE) 
FROM CUSTOMER, ORDER 
WHERE

O_CUSTKEY = C_CUSTKEY 
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Runtime Cost Breakdown
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Evaluation – All Operators and TPC-H

Overall, PushdownDB reduces runtime by 6.7× and reduces cost by 30%
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
– Examples: default presto, hive, SparkSQL, etc. 

…
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

– Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

Local
Cache

…

Caching 
table data

…
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node
Pushdown: push down selection, projection, aggregation to storage

– Examples: Redshift spectrum, Aqua, PushdownDB, etc.

Local
Cache

……

…
Caching 
table data

Pushdown results

…
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Caching vs. Pushdown
Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size

23



Caching vs. Pushdown
Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size

A hybrid design may achieve 
the best of both worlds
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Mitigate Network Bottleneck

Baseline (Pullup): always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node
Pushdown: push down selection, projection, aggregation to storage
Hybrid: hybrid caching and pushdown at fine granularity

Local
Cache

……

…

…

Local
Cache Merge

Caching 
table data

Pushdown results
…

…
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FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB 26
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FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity
– Segment as the caching granularity

ID Age …

ID Age …

ID Age …

Employee

Partition 1

Partition 2

…

Source code: https://github.com/cloud-olap/FlexPushdownDB 27
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FlexPushdownDB (FPDB) Overview
Design choices

– Cache table data rather than query results for simplicity
– Segment as the caching granularity

ID Age …

ID Age …

ID Age …

Employee

Partition 1

Partition 2

…

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB 28
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FlexPushdownDB (FPDB) Overview
Main modules
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FlexPushdownDB (FPDB)
Separable operators

– Can execute separately using 
cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)
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FlexPushdownDB (FPDB)
Separable operators

– Can execute separately using 
cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)

Query execution
– Heuristic: exploit caching when 

possible, otherwise pushdown as 
much as possible
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Separable Query Plan — Example
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Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost
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Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority
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Cache Manager
Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
– Increment the frequency counter with the estimate miss cost
– Estimated miss cost = network cost + scan cost + compute cost
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Performance Evaluation

Conclusion: FPDB outperforms baselines by 2.2x
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Evaluation – Weighted-LFU

Weighted-LFU outperforms the baseline LFU by 37%
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Evaluation – Resource Usage
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Evaluation – Resource Usage
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Pushdown DBMS – Q/A 
Why weighted LFU instead of LRU? 
Idea applied to real-world applications? 
Any drawbacks or limitations of FPDB? 
How scalable FPDB is? 
Do pushdown mechanisms work for OLTP workloads?
How to balance the tradeoff between storage-layer computation 
cost network reduction? 
How to adapt query optimizer to different pushdown layers
What operators to push down vs. stay in compute nodes?
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Next Lecture
Anil Shanbhag, et al., A Study of the Fundamental Performance 
Characteristics of GPUs and CPUs for Database Analytics. SIGMOD, 
2020

Submit course evaluation on aefis.wisc.edu 
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https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/crystal-gpu.pdf
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