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Announcements
DAWN workshop

– Reserve a presentation slot using the following google sheet
https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu 
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System Architecture
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Advantages of GPU for Data Analytics
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Advantage 1: High computational power
– GPU has massive parallelism using SIMT model 



Advantages of GPU for Data Analytics
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Challenges of GPU for Data Analytics
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Challenge 1: Limited memory capacity
– Some data sets do not fit in GPU memory



Challenges of GPU for Data Analytics
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Challenge 1: Limited memory capacity
Challenge 2: Limited interconnect bandwidth
– Inter-device data transfer is a performance bottleneck



GPU Database Roadmap
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Project 1: Saturate GPU memory [1]
– Saturate GPU memory bandwidth 

when data fits in GPU memory

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
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Project 1: Saturate GPU memory [1]

Project 2: Data compression [2]

– More data can fit in GPU memory

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022
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Project 1: Saturate GPU memory [1]

Project 2: Data compression [2]

Project 3: Hybrid CPU-GPU DB [3]
– Leverage both CPU and GPU 

computation

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022
[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu, Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, VLDB 2022



Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline
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Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
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Past work reported wide variety of gains from 2× to 1000×

One would expect the maximum gain to be roughly equal to 
the ratio of the memory bandwidth of GPU to that of CPU

Key contribution: developed Crystal library that allows GPU 
data analytics to saturate GPU memory bandwidth (V100, 
880GB/s)

Issues with Prior Work on GPU Database
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GPU Architecture
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Shared memory (~100 KB) is local to every Streaming Multiprocessors (SM)
Shared memory access is 10x faster than global memory.
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Key Idea: Tile-Based Execution Model 
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Store intermediate result between operators in the shared memory 
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GPU Global Memory

Time

Shared 
Memory

on chip
off chip

Kernel

Read

Write

(a) Conventional execution model

Execution Cores



Key Idea: Tile-Based Execution Model 
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Key Idea: Tile-Based Execution Model 
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Key Idea: Tile-Based Execution Model 
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Key Idea: Tile-Based Execution Model 
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Store intermediate result between operators in the shared memory (~10x faster)
Data is partitioned and processed in tiles (each tile must fit in shared memory)
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Key Idea: Tile-Based Execution Model 
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Key Idea: Tile-Based Execution Model 
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Experimental Results

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for       
Database Analytics, SIGMOD 2020

With Crystal, GPU is on average 25X faster than CPU running Star-
Schema Benchmark (SSB)
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Experimental Results

GPU database with frequent PCIe data transfer can underperform a 
highly optimized CPU database
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Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline
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GPU Data Compression

Supported compression schemes: (1) frame-of-reference + bit-packing, (2) delta 
encoding, (3) run-length encoding
Key challenge: decompression should not be a performance bottleneck
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Idea 1: Tile-based decompression
– Multiple decompression steps can be encapsulated into a single device function
– Decompression can be done inline with query execution

GPU Data Compression — Key Ideas 

29

GPU Global Memory

Kernel 1
Decode 

Bit-packing

Time
Query 
Kernel

GPU Global Memory

Query 
Kernel

Decode 
Delta

Shared 
Memory

on chip
off chip

Time

Kernel

Read

Device 
Function

Write

(a) Conventional decompression model (b) Tile-based decompression model

Kernel 2
Decode 
Delta

Decode 
Bit-packing

Execution Cores
In-



Idea 2: Efficient bit-packing 
compression
– Compact data format
– Low-level performance optimizations 

GPU Data Compression — Key Ideas 

Block1 Block2

Header (total count/block size) blocks
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32 Entries

Data :

Block Starts:

Total
count

Miniblock
Count

Block
Size

Bitwidth Word

4 Byte4 Byte

128 Entries

100 101 101 102 101 101 102 101 99 100 105 107 114 112 110 105

1 2 2 3 2 2 3 2 0 1 6 8 15 13 11 6

Values:

99
reference miniblock1 miniblock2

01 10 10 11 10 10 11 01 0000 0001 0110 1000 1111 1101 1011 0110

- reference

packing

maxbits = 2 maxbits = 4

Encoded Block: 99 2 4 0110101110101101 00000001011010001111110110110110
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Evaluation – Star Schema Benchmark
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(a) Compressed data size
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Evaluation – Star Schema Benchmark
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(a) Compressed data size

• Our compression rate (GPU-✱) is comparable to the best-previous scheme (i.e. nvCOMP).
• GPU-✱ is 2.2x faster in decompression time than the best-previous scheme.
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Evaluation – Star Schema Benchmark
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(a) Compressed data size

• Our compression rate (GPU-✱) is comparable to the best-previous scheme (i.e. nvCOMP).
• GPU-✱ is 2.2x faster in decompression time than the best-previous scheme.
• GPU-✱ is 2.6x faster in query running time than the best-previous scheme.
• GPU-✱ executes queries with minimal performance degradation compared to no encoding.
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Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline
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Heterogeneous GPU-CPU Data Analytics

Challenges in heterogeneous CPU-GPU data analytics
– Data placement: hot data should be cached in GPU memory 
– Heterogeneous query execution: hybrid execution with minimal inter-device 

data transfer 35
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GPU data caching should be:
1. Fine-grained: segment instead of column
2. Semantic-aware: priority of caching depends on the query pattern

Data Placement

36
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Fine-grained Semantic-Aware Caching
Weighted LFU replacement 

– Each segment is assigned a different 
weight (higher weight -> higher priority)

The weight of a segment reflects:
1. The relative speedup of caching a 

segment.
2. Correlation among segments from 

different columns
estimateQueryRuntime() uses a 
model to predict runtime, assuming 
bandwidth as the bottleneck
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Challenge: 
– Extra complexity of query execution due to only subset of data cached in 

GPU
– Query executor should fully exploit the data in GPU and coordinate query 

execution across two devices

Solution: 
– Segment-level query execution

Heterogeneous Query Execution
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Segment level execution
– Group segments with the same execution plan into segment groups

Heterogeneous Query Execution
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Segment level execution
– Group segments with the same execution plan into segment groups
– Execute each segment group and merge the results

Heterogeneous Query Execution
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Other optimizations 
– Late materialization: express intermediate relation in the form of 

row ID to reduce the total data transfer
– Operator pipelining: pipelining consecutive operators on the 

same device whenever possible
– Segment skipping: apply minmax pruning both for predicate 

evaluation and join operator

Heterogeneous Query Execution
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Three components:
– Cache Manager
– Query Optimizer
– Query Execution Engine

Mordred Architecture
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Evaluation — Caching Policies

Query runtime on SSB

Semantic-aware fine-grained caching achieves the best performance
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Evaluation — SSB Runtime

Mordred (our design) is 6× faster than the best-previous design
– 8GB cache size, ~32GB data size
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Conclusion
GPU database has great 
performance potential

Key challenge: large data sets do 
not fit in GPU memory 

– Project 1: Saturate GPU memory [1]

– Project 2: Data compression [2]

– Project 3: Hybrid CPU-GPU DB [3]
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[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022
[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu, Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, VLDB 2022
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GPU Databases – Q/A 
Special hardware designed for SQL analytics? 
Transfer between CPU and GPU becomes a bottleneck?
How popular are GPUs used in industrial databases? What 
are the main barriers? 
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Next Lecture
DAWN workshop
– Reserve a presentation slot using the following google sheet

https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu 
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