
Xiangyao Yu
12/7/2022

CS 764: Topics in Database Management Systems
Lecture 27: GPU Databases

1

Announcements
DAWN workshop

– Reserve a presentation slot using the following google sheet
https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu

2

System Architecture

3

Main
Memory

Device
Memory

PCIe

CPU GPU

Advantages of GPU for Data Analytics

4

Main
Memory

Device
Memory

PCIe

CPU GPU

Advantage 1: High computational power
– GPU has massive parallelism using SIMT model

Advantages of GPU for Data Analytics

5

Main
Memory

Device
Memory

PCIe

CPU GPU

Advantage 1: High computational power
Advantage 2: Higher Memory Bandwidth
– GPU memory bandwidth is one-order-of-magnitude higher than

CPU memory bandwidth

100GB/s 1000GB/s

Challenges of GPU for Data Analytics

6

Main
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—80GB

100GB/s 1000GB/s

Challenge 1: Limited memory capacity
– Some data sets do not fit in GPU memory

Challenges of GPU for Data Analytics

7

Main
Memory

Device
Memory

PCIe

CPU GPU

100GB—10 TB 8—80GB

100GB/s 1000GB/s

10GB/s

Challenge 1: Limited memory capacity
Challenge 2: Limited interconnect bandwidth
– Inter-device data transfer is a performance bottleneck

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

CPU memory capacity
(100GB-10TB)

CPU DB

8

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

GPU DB

CPU DB

9

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

GPU DB

CPU DB

10

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

11

Project 1: Saturate GPU memory [1]
– Saturate GPU memory bandwidth

when data fits in GPU memory

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

12

Project 1: Saturate GPU memory [1]

Project 2: Data compression [2]

– More data can fit in GPU memory

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022

GPU Database Roadmap

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

13

Project 1: Saturate GPU memory [1]

Project 2: Data compression [2]

Project 3: Hybrid CPU-GPU DB [3]
– Leverage both CPU and GPU

computation

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022
[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu, Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, VLDB 2022

Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline

14

Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline

15

Past work reported wide variety of gains from 2× to 1000×

One would expect the maximum gain to be roughly equal to
the ratio of the memory bandwidth of GPU to that of CPU

Key contribution: developed Crystal library that allows GPU
data analytics to saturate GPU memory bandwidth (V100,
880GB/s)

Issues with Prior Work on GPU Database

16

GPU Architecture

17

Shared memory (~100 KB) is local to every Streaming Multiprocessors (SM)
Shared memory access is 10x faster than global memory.

REGISTERS

L1 SMEM

SM-1

GPU Global Memory

L2 Cache

REGISTERS

L1 SMEM

SM-2

REGISTERS

L1 SMEM

SM-N

on chip
off chip

~ 10 TB/s
~ 100 KB

~ 1 TB/s
8–80 GB

↓

.
☐

=

Key Idea: Tile-Based Execution Model

18

Store intermediate result between operators in the shared memory
(~10x faster).

GPU Global Memory

Time

Shared
Memory

on chip
off chip

Kernel

Read

Write

(a) Conventional execution model

Execution Cores

Key Idea: Tile-Based Execution Model

19

GPU Global Memory

Kernel 1
Scan

Time

Shared
Memory

on chip
off chip

Kernel

Read

Write

(a) Conventional execution model

Execution Cores

Key Idea: Tile-Based Execution Model

20

GPU Global Memory

Kernel 1
Scan

Time

Shared
Memory

on chip
off chip

Kernel

Read

Write

(a) Conventional execution model

Kernel 2
Write count

Execution Cores

Key Idea: Tile-Based Execution Model

21

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Prefix sum

Shared
Memory

on chip
off chip

Kernel

Read

Write

(a) Conventional execution model

Kernel 2
Write count

Execution Cores

Key Idea: Tile-Based Execution Model

22

Store intermediate result between operators in the shared memory (~10x faster)
Data is partitioned and processed in tiles (each tile must fit in shared memory)

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Prefix sum

GPU Global Memory

Shared
Memory

on chip
off chip

Time

Kernel

Read

Write

(a) Conventional execution model (b) Tile-based execution model

Kernel 2
Write count Scan

Execution Cores

Kernel

Key Idea: Tile-Based Execution Model

23

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Prefix sum

GPU Global Memory

Write count

Shared
Memory

on chip
off chip

Time

Kernel

Read

Write

(a) Conventional execution model (b) Tile-based execution model

Kernel 2
Write count Scan

Execution Cores

Kernel

Store intermediate result between operators in the shared memory (~10x faster)
Data is partitioned and processed in tiles (each tile must fit in shared memory)

Key Idea: Tile-Based Execution Model

24

GPU Global Memory

Kernel 1
Scan

Time
Kernel 3

Prefix sum

GPU Global Memory

Prefix sumWrite count

Shared
Memory

on chip
off chip

Time

Kernel

Read

Write

(a) Conventional execution model (b) Tile-based execution model

Kernel 2
Write count Scan

Execution Cores

Kernel

Store intermediate result between operators in the shared memory (~10x faster)
Data is partitioned and processed in tiles (each tile must fit in shared memory)

÷

Experimental Results

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for
Database Analytics, SIGMOD 2020

With Crystal, GPU is on average 25X faster than CPU running Star-
Schema Benchmark (SSB)

25

↓

Experimental Results

GPU database with frequent PCIe data transfer can underperform a
highly optimized CPU database

26

Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline

27

GPU Data Compression

Supported compression schemes: (1) frame-of-reference + bit-packing, (2) delta
encoding, (3) run-length encoding
Key challenge: decompression should not be a performance bottleneck

28

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

|zoo8iʳ°9'2°"'°Éo8,!_(2oo8),,0,ls2
☒ 00

, 01 , 10, 11
,

--

(2008 , 2oof, 20104 (3 , 2 , 1)

Idea 1: Tile-based decompression
– Multiple decompression steps can be encapsulated into a single device function
– Decompression can be done inline with query execution

GPU Data Compression — Key Ideas

29

GPU Global Memory

Kernel 1
Decode

Bit-packing

Time
Query
Kernel

GPU Global Memory

Query
Kernel

Decode
Delta

Shared
Memory

on chip
off chip

Time

Kernel

Read

Device
Function

Write

(a) Conventional decompression model (b) Tile-based decompression model

Kernel 2
Decode
Delta

Decode
Bit-packing

Execution Cores
In-

Idea 2: Efficient bit-packing
compression
– Compact data format
– Low-level performance optimizations

GPU Data Compression — Key Ideas

Block1 Block2

Header (total count/block size) blocks

B1 B2 B3 B4
Refer
-ence

Miniblock1 Miniblock2 Miniblock3 Miniblock4

32 Entries

Data :

Block Starts:

Total
count

Miniblock
Count

Block
Size

Bitwidth Word

4 Byte4 Byte

128 Entries

100 101 101 102 101 101 102 101 99 100 105 107 114 112 110 105

1 2 2 3 2 2 3 2 0 1 6 8 15 13 11 6

Values:

99
reference miniblock1 miniblock2

01 10 10 11 10 10 11 01 0000 0001 0110 1000 1111 1101 1011 0110

- reference

packing

maxbits = 2 maxbits = 4

Encoded Block: 99 2 4 0110101110101101 00000001011010001111110110110110

30

Evaluation – Star Schema Benchmark

31

(a) Compressed data size

• Our compression rate (GPU-✱) is comparable to the best-previous scheme (i.e. nvCOMP).

0

1

2

3

4

5

6

7

D
at

a
si
ze

(G
B
)

No Encoding

Planner

GPU-BP

nvCOMP

GPU-*

Evaluation – Star Schema Benchmark

32

(a) Compressed data size

• Our compression rate (GPU-✱) is comparable to the best-previous scheme (i.e. nvCOMP).
• GPU-✱ is 2.2x faster in decompression time than the best-previous scheme.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

om
pr

es
si
on

ti
m

e
(m

s) Planner

GPU-BP

nvCOMP

GPU-*

(b) Decompression time
0

1

2

3

4

5

6

7

D
at

a
si
ze

(G
B
)

No Encoding

Planner

GPU-BP

nvCOMP

GPU-*

Evaluation – Star Schema Benchmark

33

(a) Compressed data size

• Our compression rate (GPU-✱) is comparable to the best-previous scheme (i.e. nvCOMP).
• GPU-✱ is 2.2x faster in decompression time than the best-previous scheme.
• GPU-✱ is 2.6x faster in query running time than the best-previous scheme.
• GPU-✱ executes queries with minimal performance degradation compared to no encoding.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

om
pr

es
si
on

ti
m

e
(m

s) Planner

GPU-BP

nvCOMP

GPU-*

(c) Query runtime(b) Decompression time
0

10

20

30

40

50

60

Q
ue

ry
R
un

ti
m

e
(m

s)

Omnisci

Planner

GPU-BP

nvCOMP

GPU-*

No Encoding

0

1

2

3

4

5

6

7

D
at

a
si
ze

(G
B
)

No Encoding

Planner

GPU-BP

nvCOMP

GPU-*

Project 1: Crystal library for in-GPU data analytics
Project 2: Data compression
Project 3: Hybrid CPU-GPU DB

Outline

34

Heterogeneous GPU-CPU Data Analytics

Challenges in heterogeneous CPU-GPU data analytics
– Data placement: hot data should be cached in GPU memory
– Heterogeneous query execution: hybrid execution with minimal inter-device

data transfer 35

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

=

GPU data caching should be:
1. Fine-grained: segment instead of column
2. Semantic-aware: priority of caching depends on the query pattern

Data Placement

36

>%_
IN

-

Fine-grained Semantic-Aware Caching
Weighted LFU replacement

– Each segment is assigned a different
weight (higher weight -> higher priority)

The weight of a segment reflects:
1. The relative speedup of caching a

segment.
2. Correlation among segments from

different columns
estimateQueryRuntime() uses a
model to predict runtime, assuming
bandwidth as the bottleneck

37

It

Challenge:
– Extra complexity of query execution due to only subset of data cached in

GPU
– Query executor should fully exploit the data in GPU and coordinate query

execution across two devices

Solution:
– Segment-level query execution

Heterogeneous Query Execution

39

Segment level execution
– Group segments with the same execution plan into segment groups

Heterogeneous Query Execution

40

Segment level execution
– Group segments with the same execution plan into segment groups
– Execute each segment group and merge the results

Heterogeneous Query Execution

41

→
_

Other optimizations
– Late materialization: express intermediate relation in the form of

row ID to reduce the total data transfer
– Operator pipelining: pipelining consecutive operators on the

same device whenever possible
– Segment skipping: apply minmax pruning both for predicate

evaluation and join operator

Heterogeneous Query Execution

42

Three components:
– Cache Manager
– Query Optimizer
– Query Execution Engine

Mordred Architecture

43

Evaluation — Caching Policies

Query runtime on SSB

Semantic-aware fine-grained caching achieves the best performance

44

•

EI

↑

• am .

Evaluation — SSB Runtime

Mordred (our design) is 6× faster than the best-previous design
– 8GB cache size, ~32GB data size

45

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 mean

Queries

101

102

103

104

E
xe

cu
ti
on

ti
m

e
(m

s)

CoGaDB Crystal-CPU HeavyDB Mordred

Query runtime on SSB (SF = 160)

MO

Conclusion
GPU database has great
performance potential

Key challenge: large data sets do
not fit in GPU memory

– Project 1: Saturate GPU memory [1]

– Project 2: Data compression [2]

– Project 3: Hybrid CPU-GPU DB [3]

46

Data size

Pe
rfo

rm
an

ce

GPU memory capacity
(8-80 GB)

CPU memory capacity
(100GB-10TB)

CPU DB

[1] Anil Shanbhag, Samuel Madden, Xiangyao Yu, A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics, SIGMOD 2020
[2] Anil Shanbhag*, Bobbi Yogatama*, Xiangyao Yu, Samuel Madden, Tile-based Lightweight Integer Compression in GPU, SIGMOD 2022
[3] Bobbi Yogatama, Weiwei Gong, Xiangyao Yu, Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, VLDB 2022

Future
Directions

GPU Databases – Q/A
Special hardware designed for SQL analytics?
Transfer between CPU and GPU becomes a bottleneck?
How popular are GPUs used in industrial databases? What
are the main barriers?

47

Next Lecture
DAWN workshop
– Reserve a presentation slot using the following google sheet

https://docs.google.com/spreadsheets/d/1Re1M9FmJwI_YkidhNgeV0iKn-
cIssFrK_J1PMidaAuw/edit?usp=sharing

– 8-min per group (presentation + QA)

Project report (DDL: Dec. 19)
– Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu

48

