WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 3: Radix Join

Xiangyao Yu
9/14/2021

Today’s

Paper: Radix Join

Database Architecture Optimized for the new
Bottleneck: Memory Access

Peter Boncz®

Data Distilleries B.V.
Amsterdam - The Netherlands
P.Boncz@ddi.nl

Abstract

In the past decade, advances in speed of com-
modity CPUs have far out-paced advances
in memory latency. Main-memory access is
therefore increasingly a performance bottle-
neck for many computer applications, includ-
ing database systems. In this article, we use a
simple scan test to show the severe impact of
this bottleneck. The insights gained are trans-
lated into guidelines for database architecture;
in terms of both data structures and algo-
rithms. We discuss how vertically fragmented
data structures optimize cache performance
on sequential data access. We then focus
on equi-join, typically a random-access oper-
ation, and introduce radix algorithms for par-
titioned hash-join. The performance of these
algorithms is quantified using a detailed ana-
Iytical model that incorporates memory access
cost. Experiments that validate this model
were performed on the Monet database sys-
tem. We obtained exact statistics on events
like TLB misses, L1 and L2 cache misses, by
using hardware performance counters found in
modern CPUs. Using our cost model, we show
how the carefully tuned memory access pat-
tern of our radix algorithms make them per-
form well, which is confirmed by experimental
results.

*This work was carried out when the author was at the
University of Amsterdam, supported by SION grant 612-23-431
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its dafe appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

VLDB 1999

Stefan Manegold

Martin Kersten
CWI

Amsterdam - The Netherlands

{S.Manegold,M.Kersten } @cwi.nl

1 Introduction

Custom hardware - from workstations to PCs — has
been experiencing tremendous improvements in the
past decades. Unfortunately, this growth has not
been equally distributed over all aspects of hardware
performance and capacity. Figure 1 shows that the
speed of commercial microprocessors has been increas-
ing roughly 70% every year, while the speed of com-
modity DRAM has improved by little more than 50%
over the past decade [Mow94]. Part of the reason for
this is that there is a direct tradeoff between capacity
and speed in DRAM chips, and the highest priority
has been for increasing capacity. The result is that
from the perspective of the processor, memory has
been getting slower at a dramatic rate. This affects
all computer systems, making it increasingly difficult
to achieve high processor efficiencies.

Three aspects of memory performance are of inter-
est: bandwidth, latency, and address translation. The
only way to reduce effective memory latency for appli-

1000 p= o=====c Processors
g w0 DRAM
B 100 =
2 -
v
10 p= o
[~ a
1 -
1 1 1 1 1 | | 1 |
79 81 83 8 87 8 91 93 95 97

Figure 1: Hardware trends in DRAM and CPU speed

—

Agenda

Hardware background
n-memory partitioned hash join

Radix join

Experimental results

Radix join vs. non-partition hash join ‘
Column-store and encoding '

Agenda

Hardware background

In-memory partitioned hash join
Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

Memory Wall

1000 = oww=o Processors

= The growth of memory speed

2 # DRAM is slower than the growth of
g 100 CPU speed
7 — Latency

— Bandwidth

10

I J | l | I |

79 81 8 8 8 8 91 93 95 97

Year

Figure 1: Hardware trends in DRAM and CPU speed

Memory/Cache Hierarchy

Higher bandwidth
Lower access latency
Smaller capacity

2
o
=
[«
o nases
L1 cache-line L1 Cache
L2 cache-line ' L2 Cache

W

Main Memo

|

Memory Page

—

irtual Memory
swap file
(on disk)

Figure 2: Hierarchical Memory System

Memory/Cache Hierarchy

Higher bandwidth
Lower access latency
Smaller capacity

CPU Die

L1 Cache

Optimizing join in DRAM/Disk
system
— GRACE hash join

L1 cache-line

L2 cache-line ' L2 Cache

N ' Main Memoi
Memory Page - —_

Optimizing join in SRAM/DRAM

- irtual Memory
e system?
(on disk)

Figure 2: Hierarchical Memory System

Optimizing Join in Main-Memory DBMS

BUS

CPU Die

L1 Cache

L1 cache-line

L2 cache-line ' L2 Cache

' Main Memoi
Memory Page —— — L
irtual Memory
swap file
(on disk)

Figure 2: Hierarchical Memory System

Intuitive solution: Partition tables
into shards that fit in SRAM cache

— Like GRACE hash join

Recap: GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
— Each shard of R fits in CPU cache

Phase 2: Separately join each pairs of partitions

Group Discussion

In some modern in-memory DBMSs, the entire database can fit in

memory. In suc
chip SRAM cac

N a system, can similar optimizations be applied to on-
nes vs. DRAM? What are the key challenges compared

to a DRAM vs.

Disk setting?

10

Group Discussion

In some modern in-memory DBMSs, the entire database can fit in
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared
to a DRAM vs. Disk setting?

— Software does not have full control of CPU cache contents

— Disk access granularity is a_block: DRAM access granularity is aFcacheIine

— CPU cache has very limited capacity £, YR

11

Optimizing Join in Main-Memory DBMS

Intuitive solution: Partition tables
into shards that fit in SRAM cache

— Like GRACE hash join

BUS

CPU Die

L1 Cache |

L1 cache-line

Challenges:

_—TLB becomes a performance
"~ bottleneck if too many partitions exist

— Determine the memory layout of data
rlo_gliti_cg_gg_ﬁe.g., fragmentation)

L2 cache-line — ' L2 Cache

[' Main Memoi
Memory Page —— — L
irtual Memory
swap file
(on disk)

Figure 2: Hierarchical Memory System

12

Agenda

Hardware background

In-memory partitioned hash join
Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

13

Translation Lookaside Buffer (TLB)

Virtual Address

Page #

Offset

TLB

VPN

PPN

Firsttry

-—3 PTE

the TLB =

source: http://pages.cs.wisc.edu/~bart/537/lecturenotes/s17.html

Page Table

TLB miss: use this

Physical Address

Physical Page #

Offset

Physical Memory

0 L

2

A cache of OS page table to

accelerate virtual address to

physical address translation
_—T1 B hit has no cost

— TLB miss requires an expensive
page table walk

TLB has a small number of
entries

of Partitions vs. TLB size

Relatlon R

Partition 1 Partition 2 Partition 3 Partiti@

If the number of partitions is greater than the number of TLB entries,

the system experience TLB thrashing, i.e., many accesses lead to
TLB misses ’

15

Thrashing

TLB thrashing: Number of accessed pages (i.e., number of
partitions) is greater than the number of TLB entries in hardware

Cache thrashing: Number of accessed cachelines (i.e., number of
partitions) is greater than the cache capacity

Page thrashing (in last lecture): Number of accessed pages (i.e.,
number of partitions) is greater than the memory capacity

16

Optimizing Join in Main-Memory DBMS

Intuitive solution: Partition tables
into shards that fit in SRAM cache

BUS

g
5 - .
- Challenges:
L1 cache-line L1 Cache — TLB becomes a performance
L2 cache-line —+ L2 Cache bottleneck if too many partitions

exist

— Determine the memory layout of data
partitions (e.g., fragmentation)

' Main Memoi
Memory Page —

Do not have too many partitions per
round of partitioning. Limiting factor
Figure 2: Hierarchical Memory System includes cache size and TLB size.

o irtual Memory
swap file
(on disk)

17

Fragmentation

Relation R

—

i
Page | i 0 i :
i i i i i

Partition 1 Partition 2 Partition 3 Partition N

How to track location and size for different partitions?
— Frequent memory allocation (e.g., malloc) is expensive
— Loss of memory capacity due to fragmentation
— Problem becomes worse if multiple passes of partitioning is needed

18

Agenda

Hardware background

In-memory partitioned hash join
Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

19

Radix Partitioning 28 uders.

Cluster on the lower B bits of the integer
Pass 1 (2 bits) hash-value of the partition key

38 (001) oo Xl (001) — For pass p, use B, bits for partitioning
(001) (001) — Start with left most bits
(011) (001) B, B hogln LE)
(111) (000) — 4 L - J 4 E. n
(100) (001) (,f M —) @‘j X
(001) (011) —
(100) (010) & 'oC'ES
(110) (100) B
(000) (100) 2
(101) (101) (ZB' 2’
(010) (111) B(""Qa,,
(001) (110) P) ‘Z_B {ﬂv‘h"{%ws M Aste

20

Radix Partitioning

57

[

ass 1 (2 bits)

[———

(001)
(001)
(011)
(111)
Sorn

(100)
(001)
(100)
(110)
(000)
(101)
(010)
(001)

00 (001)
(001)
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101)
(111)
(110)

Cluster on the lower B bits of the integer
hash-value of the partition key

— For pass p, use B, bits for partitioning

— Start with left most bits

The output array of Radix partitioning has
identical structure as the input array

—No complex memory allocation

— No fragmentation

21

Radix Partitioning

ﬂzss 1 (2 bits)

(001) -+

Cluster on the lower B bits of the integer
hash-value of the partition key

— For pass p, use B, bits for partitioning
(001) — Start with left most bits
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101) Q: How to know where to write in the output
(111) array? (e.g., 47 in the example)

(110) — Need to scan the array twice: first time collect
size per partition

The output array of Radix partitioning has
identical structure as the input array

— No complex memory allocation

— No fragmentation

22

Radix Partitioning

(001)
(001)
(011)
(111)
(100)

ﬂzss 1 (2 bits)

(001)
(001)
(001)
(000)
(001)

(001)
(100)
(110)
(000)
(101)

(011)
(010)
(100)
(100)
(101)

(010)
(001)

(111)
(110)

First scan

- “10”: 3 records
- “11”: 2 records

Q: How to know where to write in the output
array? (e.g., 47 in the example)
— Need to scan the array twice; first time collect

size per partition
23

Radix Partitioning

First scan Write location in output buffer
ﬂ's‘“ (2 bits) — “00’ cords ~ “00”: entry 0_
(001) (001) — “01”®'§cords - ‘01" entry 5_
(001) (001) - “10”: 3 records —-10":entry 5 + 2
(011) (001) - “11”: 2 records - “11"entry5+2+ 3
e (o S~— — Prefix Sum
(100) (001) —_—

(001)
(100)
(110)
(000)
(101)
(010)
(001)

(011)
(010)
(100)

o, Q: How to know where to write in the output

(111) array? (e.g., 47 in the example)

(110) — Need to scan the array twice; first time collect
Size per partition

24

Radix Partitioning

ﬂzss 1 (2 bits)

(001)
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101)
(111)
(110)

First scan Write location in output buffer
— “00”: 5 records — “00”: entry O
— “01”: 2 records — “01”: entry 5
— “10”: 3 records - “10”: entr—y—5-+ 2
— “11”: 2 records - “11"entry5+2+ 3
~— —~ Prefix Sum

Second scan: write to corresponding
location in the output buffer

Q: How to know where to write in the output
array? (e.g., 47 in the example)
— Need to scan the array twice; first time collect

size per partition
25

Radix Partitioning

ﬂss 1 (2 bits)

(001)
(001)
(011)

Fully clustering B bits may

Pass 2 (1 bit) require mu|t|p|e passes

(000)@

(001)A
o1) (@ Number of partitions per pass

(111)
(100)
(001)
(100)
(110)
(000)
(101)
(010)
(001)

(001)
(001) §
(010)
(011)
(100)
(100)
(101)
(110)
(111)

IS bounded by TLB and cache
size P -

26

Similar to GRACE hash join, join the
corresponding partitions from the two relations

Can use either hash join or nested-loop join

<~

Discussion Question:
Can we use sort merge join for the
two relations?

27

Agenda

Hardware background
n-memory partitioned hash join

Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

28

L1 misses

L2 misses

Evaluation: Radix Clustering

TLB

L1 TLB? L2

TLB® L12

TLB*

Tl

1e+07

| I I

T T

1e+07

M

1e+06

10 15

The machine’s TLB has 64 entries

number of bits | (B)

TLB misses

(2]
o
o
€

1e+07

1e+06

1e+05

1e+04

1e+04

1e+03

Ty

T

f

|

B e

T

e 0.-0-0-8-0 .g_.:-

......... XK e - -

=

)

| : |

.'_,.-i,,,i ‘W“ﬁ

+ -

g

I

4
R
R
R
readimmeer g
~

ol

10 15

number of bits

20

29

Evaluation: Join Performance

phash phash phash
L2 TLB L1

1e+06

1e405

1e+04

‘;;?zecs
&

1e+03

1e+02 |

T LA
+ g/

RY

1 i

A\ g eo@Roes

i, n

Y % A v -’

CERE [A Gy G .a-B - A
+ f‘]‘ - ,:]]. o] I_; ‘: B ,(!) - \2-)/[

\\ . N (. e
¥\ v . J \ 4
\ & 4 a, e A
A y A

.‘:‘ ; oA
-m

ST 16000000
e 4000000
A 1000000
o 250000
62500
15625

1 passes
2 passes
3 passes
4 passes
g phash min, radix min
; best

f /(: \T'\ |

+ o 64000000 ——

5 10

15 20
number of bits

Nested-loop join prefers small partitions

Hash-join achieves similar performance
for a range of partition sizes

30

millisecs

Evaluation: Overall

1e+07 [

1e+06 5

1e+05

1e+04 |-

1e+03 5

1e+02

1e+01

sort-merge
simple hash

phash TLB

hash L1 —-®—]
phash 256 -

phash L2 --

®OmD ¥ X+

phash min ----e--

radix 8
| radix lmin

L

L | i 1 i
256 1024 4096 16384

cardinality (in 1000)

1
65536

Sort-merge < Simple hash < phash L2 <
phash TLB and the rest

31

Agenda

Hardware background
n-memory partitioned hash join

Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

32

A Different View Point

Design and Evaluation of Main Memory
Hash Join Algorithms for Multi-core CPUs

Spyros Blanas Yinan Li Jignesh M. Patel
University of Wisconsin—Madison
{sblanas, yinan, jignesh}@cs.wisc.edu

ABSTRACT

The focus of this paper is on investigating efficient ha:
algorithms for modern multi-core processors in main mem-
ory environments. This paper dissects each internal phase
of a typical hash join algorithm and considers different al-
ternatives for implementing each phase, producing a family
of hash join algorithms. Then, we implement these main
memory algorithms on two radically different modern multi-
processor systems, and carefully examine the factors that
impact the performance of each method.

Our ana

is reveals some interesting results - a ves

ple hash join algorithm is very competitive to the other
more complex methods. This simple join
shared hash table and does not partition the input relations.
Its simplicity implies that it requires fewer parameter set-
tings, thereby making it far easier for query optimizers and
execution engines to use it in practice. Furthermore, the
performance imple algorithm improves dramatically
as the skew in the input data increases, and it quickly starts
to outperform all other algorithms. Based on our results,
we propose that database implementers consider adding this
simple join algorithm to their repertoire of main memory
join algorithms, or adapt their methods to mimic the strat-
egy employed by this algorithm, especially when joining in-
puts with skewed data distributions.

orithm builds a

Categories and Subject Descriptors

H.24. [Database Management):
ssing, Relational databases

Systems— Query pro-

General Terms

Algorithms, Design, Performance

Keywords

hash join, multi-core, main memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, 1o post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD'11, June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 97! 106 ..$10.00.

3-0¢

NTRODUCTION

Large scale multi-core processors are imminent. Modern
ors today already have four or more cores, and for the
w years Intel has been introducing two more cores
r roughly every 15 months. At this rate, it
is not hard to imagine running database management sys-
tems (DBMSs) on processors with hundreds of cores in the
near future. In addition, memory prices are continuing to
drop. Today 1TB of memory costs as little as $25,000. Con-
sequently, many databases now either fit entirely in main
memory, or their working set is main memory resident. As
a result, many DBMSs are becoming CPU bound

In this evolving architectural landscape, DBMSs have the
unique opportunity to leverage the inherent parall
is provided by the relational data model. Data is
by declarative query languages to user appl:
DBMS is free to choose its execution strategy. Coupled
with the trend towards impending very large multi-cores,
this implies that DBMSs must carefully rethink how they
can exploit the parallelism that is provided by the modern
multi-core processors, or DBMS performance will stall
natural question to ask then is whether there is anything
new here. Beginning about three decades ago, at the incep-
tion of the field of parallel DBM:
thoroughly examined how a DBMS can use various forms of
paral
nothing, shared-memory, and shared disk architectures [17]
If the modern multi-core architecture:
architectural templates, then we can s
ods that have already been designed.

In fact, to a large extent this is the approach that DBM
have haven taken towards dealing with multi-core machines
Many commercial DBMSs simply treat a multi-core proces-
mmetric mu SMP) machine, lever-

ism that

exposed

ations and the

the database community

lelism. These forms of parallelism include pure shared-

res
mply adopt the meth-

smble any of these

ras a
aging previous work that was done by the DBMS vendors
in reaction to the increasing popularity of SMP machines

decades ago. These methods break up the task of a single
operation, such as an equijoin, into disjoint parts and allow
each processor (in an SMP box) to work on each part in-
dependently. At a high-level, these methods resemble vari-
ations of query processing techniques that were developed
for parallel shared-nothing architectures [6], but adapted
for SMP machines. In most commercial DBMS, this ap-
proach the entire design process, ranging
from system internals (j ng, for example) to their
pricing model, which is ing the SMP
pricing model. On the other hand, open-source DBMSs have

reflected acros

proces:

equently done by

SIGMOD 2011

12 years later
Multicore processors

Two design considerations

— minimizing the number of processor cache
misses => Radix Join

— minimizing processor synchronization costs
=> No partition hash join

33

Evaluation on Multicore

600 = , 600 = .
partition ——— build msss probe mm=m partition ——— build msss probe
500 |- 0 = 500 [~ I -
@ @
S 400 H 2 400
2 0 r g Fl
S 300 |- A . 3 300 [i
& g
8 g :
S 200 A S 200
o &
100 X a 100 |
Wl = af
N T e
NENENENENANE xxy_xx; N!E!Exx 0 2 jhl HH
0 N 0) w0
TNy TRLTNRRE AR S eaeingy esreeagy | SRR
. Shered independent e No Shared Independent Radix-best
Number of partitions Number of partitions
Uniform dataset Highly skewed dataset

T

Important to minimize synchronization overhead in multicore processors

Agenda

Hardware background
n-memory partitioned hash join

Radix join

Experimental results

Radix join vs. non-partition hash join
Column-store and encoding

35

Other Topics

"ltem" Table

supporder part price discntqty tax flag statusshipmodedate1 date2 comment

® |10 | |04.75] ® [* (010, * |[* | AR N EREAE
® |10 | * (1150 ® |*|0.00 * |[°* | MAL S |Pe |)@
® |11]*|1020] ®* (* ({000 ®* (* [(TRUCK| ®* |® |°* |°
® (11 |*|75.00f * (*|{000 * |* | AR > . || e
* |11 |*/0250 = | 1000 ® | |SHIP | [& & @
® |12 | |9280| ® (¢ (010 * |* | AR N R
* |13|* |3750| ® |*|0.10 * |* | SHIP e[|*|°
® (13111425 © 1000 * |°® [MAIL | ® [|°® |

idth of rel

tional tupl

at float int flﬁatchar(n int varchar date date date char(27)

int int int ::t

ve%ical fragm ntation in Monet

100010 100004.75 1000] 0.10/ [1000[AIR \
1001110 [1001/11.50| [1001|0.00| |1001 |MAIL 3\ |0 [REGAIR
100211 | [100210.20| [1002| 0.00| |1002|TRUCK 1 ; L:‘RUCK
100311/ 100375.00/ 1003/ 0.00 |1003|AIR 2- \3 WAL
100411 [100402.50| [1004| 0.00| |1004|SHIP 61/ f4 | RAIL
100512/ [100592.80| 1005/ 0.10| 1005 AIR 2\ 5 |FoB
100613 [100637.50| [1006| 0.10 |1006|SHIP 61/ 6 |SHIP
100713 1007/14.25, 1007/ 0.00| | 1007 MAIL 13/ physical data
le—>] | »| |«—»| logical appearance | structures
8 bytes 8 bytes 8 bytes optimized BAT storage: 1 byte per column

= 80 bytes o]

encoding BAT

Column-store for analytical
databases
— Stonebraker, Mike, et al. C-store: a

column-oriented DBMS. VLDB
2005

Other Topics

"ltem" Table

supporder part price discntqty tax flag statusshipmodedate1 date2 comment

® |10 |0475| ® | (010 * |* | AR £ |= | = e
® |10 (1150 ® (*(0.00 * |* | MAL S |Pe |)@
® |11]*|1020] ®* (* ({000 ®* (* [(TRUCK| ®* |® |°* |°
® (11 |*|75.00f * (*|{000 * |* | AR > . || e
* |11 |*/0250 = | 1000 ® | |SHIP | [& & @
® |12 (9280| ® (* (010 * |* | AR N R
® |13 | |3750] ® | (010 * |* | SHIP ¢ (o o |
® [131° 11425/ * |*/000 * |* [MAIL | ® [® |°® |

int Tt int :'tat float int f ﬁatchar(n int varchar date date date char(27)
» idth of relational tuple ~= 80 bytes -

T ve%ical fragm ntation in Monet

encoding BAT

100010 [1000[04.75/ [1000] 0.10, [1000]AIR 2.
1001/10| 1001/11.50 1001/0.00| |1001 |MAIL 3\\<0 REG AIR
100211 100210.20| [1002(0.00 |1002|TRUCK 15 ; ;:‘RUCK
100311 | 100375.00 1003/ 0.00 |1003|AIR 2- \3 | WAL
100411 | 10040250 1004/ 0.00 |1004|SHIP +6\/ f4 | RaiL
100512 100592.80 1005/ 0.10 [1005|AIR 2\/| 5 |FoB
100613 | 1006(37.50| (1006/0.10/ | 1006 |SHIP 6./ 6 | SHIP
o

1007/13| {1007/14.25| {1007/ 0.00/ {1007 | MAIL physical data

|—>] | > |- »| logical appearance e structures

8 bytes 8 bytes 8 bytes optimized BAT storage: 1 byte per column

Column-store for analytical
databases
— Stonebraker, Mike, et al. C-store: a

column-oriented DBMS. VLDB
2005

Dictionary encoding

— Many other encoding/compression
schemes exist. E.g., bit-packing,
delta encoding, RLE, etc.

Radix Join — Comments and Q/A

Radix join ensures tuples with same join key belong to same cluster?
Radix join assumes attributes stored as compact integer array?
Disadvantage of radix join?

Why having a shared hash table efficient for skewed data?

Common approach to use analytical model?

How to pick best parameters? (configurations vary across machines)
CPU speed improvement is also slowing down now.

Can radix join make use of modern hierarchical memory systems?

Core idea of radix-join portable to other operators?
38

Group Discussion

We want to join three tables, S > R < T. Assume S is large but R and
T are relatively small (but larger than CPU cache). Assume the two
joins are on different join keys. Would you use non-partitioned hash join
or radix join for this query? Please justify your choice.

39

Before Next Lecture

Submit review for

Hong-Tai Chou, David DeWitt, An Evaluation of Buffer
Management Strategies for Relational Database Systems.
Algorithmica, 1986

40

