
Xiangyao Yu
9/14/2021

CS 764: Topics in Database Management Systems
Lecture 3: Radix Join

1

Today’s Paper: Radix Join

VLDB 1999 2-

Agenda

3

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

M
I

Agenda

4

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

Memory Wall
The growth of memory speed
is slower than the growth of
CPU speed

– Latency
– Bandwidth

5

Memory/Cache Hierarchy

6

Higher bandwidth
Lower access latency
Smaller capacity

E

Memory/Cache Hierarchy

Optimizing join in DRAM/Disk
system

– GRACE hash join

Optimizing join in SRAM/DRAM
system?

7

Higher bandwidth
Lower access latency
Smaller capacity

Optimizing Join in Main-Memory DBMS
Intuitive solution: Partition tables
into shards that fit in SRAM cache

– Like GRACE hash join

8

Recap: GRACE Hash Join
Phase 1: Partition both R and S into pairs of k shards

– Each shard of R fits in CPU cache
Phase 2: Separately join each pairs of partitions

9

R S O

Group Discussion

In some modern in-memory DBMSs, the entire database can fit in
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared
to a DRAM vs. Disk setting?

10

Group Discussion

In some modern in-memory DBMSs, the entire database can fit in
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared
to a DRAM vs. Disk setting?

– Software does not have full control of CPU cache contents
– Disk access granularity is a block; DRAM access granularity is a cacheline
– CPU cache has very limited capacity

11

-

4kB 647

Optimizing Join in Main-Memory DBMS
Intuitive solution: Partition tables
into shards that fit in SRAM cache

– Like GRACE hash join

Challenges:
– TLB becomes a performance

bottleneck if too many partitions exist
– Determine the memory layout of data

partitions (e.g., fragmentation)

12

=

Agenda

13

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

Translation Lookaside Buffer (TLB)
A cache of OS page table to
accelerate virtual address to
physical address translation

– TLB hit has no cost
– TLB miss requires an expensive

page table walk

TLB has a small number of
entries

14

source: http://pages.cs.wisc.edu/~bart/537/lecturenotes/s17.html

± -

of Partitions vs. TLB size

If the number of partitions is greater than the number of TLB entries,
the system experience TLB thrashing, i.e., many accesses lead to
TLB misses

15

Relation R

…

Partition 1 Partition 2 Partition 3 Partition N

TLB
…

Page

=

☒

Thrashing
TLB thrashing: Number of accessed pages (i.e., number of
partitions) is greater than the number of TLB entries in hardware

Cache thrashing: Number of accessed cachelines (i.e., number of
partitions) is greater than the cache capacity

Page thrashing (in last lecture): Number of accessed pages (i.e.,
number of partitions) is greater than the memory capacity

16

Optimizing Join in Main-Memory DBMS
Intuitive solution: Partition tables
into shards that fit in SRAM cache

Challenges:
– TLB becomes a performance

bottleneck if too many partitions
exist

– Determine the memory layout of data
partitions (e.g., fragmentation)

17

Do not have too many partitions per
round of partitioning. Limiting factor
includes cache size and TLB size.

Fragmentation

How to track location and size for different partitions?
– Frequent memory allocation (e.g., malloc) is expensive
– Loss of memory capacity due to fragmentation
– Problem becomes worse if multiple passes of partitioning is needed

18

Relation R

Partition 1 Partition 2 Partition 3 Partition N

Page …

Agenda

19

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

Radix Partitioning
Cluster on the lower B bits of the integer
hash-value of the partition key

– For pass p, use Bp bits for partitioning
– Start with left most bits

20

2B dusters
.

↓, -

F!%÷¥÷:-
2B, 2B_

-zBi+B#ptitbns in total
.

Radix Partitioning
Cluster on the lower B bits of the integer
hash-value of the partition key

– For pass p, use Bp bits for partitioning
– Start with left most bits

The output array of Radix partitioning has
identical structure as the input array

– No complex memory allocation
– No fragmentation

21

F
-

÷ I

↑ ,

!
-

Radix Partitioning
Cluster on the lower B bits of the integer
hash-value of the partition key

– For pass p, use Bp bits for partitioning
– Start with left most bits

The output array of Radix partitioning has
identical structure as the input array

– No complex memory allocation
– No fragmentation

Q: How to know where to write in the output
array? (e.g., 47 in the example)

– Need to scan the array twice; first time collect
size per partition

22

↓ - =
,

og- ⇒

⇒

I

Radix Partitioning

Q: How to know where to write in the output
array? (e.g., 47 in the example)

– Need to scan the array twice; first time collect
size per partition

23

First scan
– “00”: 5 records
– “01”: 2 records
– “10”: 3 records
– “11”: 2 records

↓ 8

Radix Partitioning

Q: How to know where to write in the output
array? (e.g., 47 in the example)

– Need to scan the array twice; first time collect
size per partition

24

First scan
– “00”: 5 records
– “01”: 2 records
– “10”: 3 records
– “11”: 2 records

Write location in output buffer
– “00”: entry 0
– “01”: entry 5
– “10”: entry 5 + 2
– “11”: entry 5 + 2 + 3

Prefix Sum

8.+

Radix Partitioning

Q: How to know where to write in the output
array? (e.g., 47 in the example)

– Need to scan the array twice; first time collect
size per partition

25

First scan
– “00”: 5 records
– “01”: 2 records
– “10”: 3 records
– “11”: 2 records

Write location in output buffer
– “00”: entry 0
– “01”: entry 5
– “10”: entry 5 + 2
– “11”: entry 5 + 2 + 3

Prefix Sum
Second scan: write to corresponding
location in the output buffer

Ifb-
\
,

D-

Radix Partitioning
Fully clustering B bits may
require multiple passes

Number of partitions per pass
is bounded by TLB and cache
size

26

µ
-

④

i.
✓
_

←

I

Join
Similar to GRACE hash join, join the
corresponding partitions from the two relations

Can use either hash join or nested-loop join

27

Discussion Question:
Can we use sort merge join for the
two relations?

* é:*
-

Agenda

28

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

Evaluation: Radix Clustering

The machine’s TLB has 64 entries

29

(B)

26=64

f) (↑

f)
-

↑ ↑B=w

→

AFT
-

↑

=

Evaluation: Join Performance

Nested-loop join prefers small partitions

Hash-join achieves similar performance
for a range of partition sizes

30

NY

\

+☐
↓

Evaluation: Overall
Sort-merge < Simple hash < phash L2 <
phash TLB and the rest

31

-

Agenda

32

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

A Different View Point
12 years later
Multicore processors

Two design considerations
– minimizing the number of processor cache

misses => Radix Join
– minimizing processor synchronization costs

=> No partition hash join

33SIGMOD 2011

Evaluation on Multicore

Uniform dataset

34

Highly skewed dataset

Important to minimize synchronization overhead in multicore processors

☐
-
◦
✗ ✗☐

Agenda

35

Hardware background
In-memory partitioned hash join
Radix join
Experimental results
Radix join vs. non-partition hash join
Column-store and encoding

Other Topics
Column-store for analytical
databases

– Stonebraker, Mike, et al. C-store: a
column-oriented DBMS. VLDB
2005

36

I

Other Topics
Column-store for analytical
databases

– Stonebraker, Mike, et al. C-store: a
column-oriented DBMS. VLDB
2005

Dictionary encoding
– Many other encoding/compression

schemes exist. E.g., bit-packing,
delta encoding, RLE, etc.

37

Radix Join – Comments and Q/A

38

Radix join ensures tuples with same join key belong to same cluster?
Radix join assumes attributes stored as compact integer array?
Disadvantage of radix join?
Why having a shared hash table efficient for skewed data?
Common approach to use analytical model?
How to pick best parameters? (configurations vary across machines)
CPU speed improvement is also slowing down now.
Can radix join make use of modern hierarchical memory systems?
Core idea of radix-join portable to other operators?

Group Discussion

We want to join three tables, S ⨝ R ⨝ T. Assume S is large but R and
T are relatively small (but larger than CPU cache). Assume the two
joins are on different join keys. Would you use non-partitioned hash join
or radix join for this query? Please justify your choice.

39

Before Next Lecture
Submit review for

Hong-Tai Chou, David DeWitt, An Evaluation of Buffer
Management Strategies for Relational Database Systems.
Algorithmica, 1986

40

