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Abstract

In the past decade, advances in speed of com-
modity CPUs have far out-paced advances
in memory latency. Main-memory access is
therefore increasingly a performance bottle-
neck for many computer applications, includ-
ing database systems. In this article, we use a
simple scan test to show the severe impact of
this bottleneck. The insights gained are trans-
lated into guidelines for database architecture;
in terms of both data structures and algo-
rithms. We discuss how vertically fragmented
data structures optimize cache performance
on sequential data access.  We then focus
on equi-join, typically a random-access oper-
ation, and introduce radix algorithms for par-
titioned hash-join. The performance of these
algorithms is quantified using a detailed ana-
Iytical model that incorporates memory access
cost. Experiments that validate this model
were performed on the Monet database sys-
tem. We obtained exact statistics on events
like TLB misses, L1 and L2 cache misses, by
using hardware performance counters found in
modern CPUs. Using our cost model, we show
how the carefully tuned memory access pat-
tern of our radix algorithms make them per-
form well, which is confirmed by experimental
results.
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1 Introduction

Custom hardware - from workstations to PCs — has
been experiencing tremendous improvements in the
past decades. Unfortunately, this growth has not
been equally distributed over all aspects of hardware
performance and capacity. Figure 1 shows that the
speed of commercial microprocessors has been increas-
ing roughly 70% every year, while the speed of com-
modity DRAM has improved by little more than 50%
over the past decade [Mow94]. Part of the reason for
this is that there is a direct tradeoff between capacity
and speed in DRAM chips, and the highest priority
has been for increasing capacity. The result is that
from the perspective of the processor, memory has
been getting slower at a dramatic rate. This affects
all computer systems, making it increasingly difficult
to achieve high processor efficiencies.

Three aspects of memory performance are of inter-
est: bandwidth, latency, and address translation. The
only way to reduce effective memory latency for appli-
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Figure 1: Hardware trends in DRAM and CPU speed
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Memory/Cache Hierarchy
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Optimizing Join in Main-Memory DBMS
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— Like GRACE hash join



Recap: GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
— Each shard of R fits in CPU cache

Phase 2: Separately join each pairs of partitions




Group Discussion

In some modern in-memory DBMSs, the entire database can fit in

memory. In suc
chip SRAM cac

N a system, can similar optimizations be applied to on-
nes vs. DRAM? What are the key challenges compared

to a DRAM vs.

Disk setting?
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Group Discussion

In some modern in-memory DBMSs, the entire database can fit in
memory. In such a system, can similar optimizations be applied to on-
chip SRAM caches vs. DRAM? What are the key challenges compared
to a DRAM vs. Disk setting?

— Software does not have full control of CPU cache contents

— Disk access granularity is a_block: DRAM access granularity is aFcacheIine

— CPU cache has very limited capacity £, YR

11



Optimizing Join in Main-Memory DBMS

Intuitive solution: Partition tables
into shards that fit in SRAM cache

— Like GRACE hash join
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Translation Lookaside Buffer (TLB)

Virtual Address

Page #

Offset

TLB

VPN

PPN

Firsttry

-—3 PTE

the TLB =

source: http://pages.cs.wisc.edu/~bart/537/lecturenotes/s17.html

Page Table

TLB miss: use this

Physical Address

Physical Page #

Offset

Physical Memory

0 L

2

A cache of OS page table to

accelerate virtual address to

physical address translation
_—T1 B hit has no cost

— TLB miss requires an expensive
page table walk

TLB has a small number of
entries



# of Partitions vs. TLB size

Relatlon R

Partition 1 Partition 2 Partition 3 Partiti@

If the number of partitions is greater than the number of TLB entries,

the system experience TLB thrashing, i.e., many accesses lead to
TLB misses ’
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Thrashing

TLB thrashing: Number of accessed pages (i.e., number of
partitions) is greater than the number of TLB entries in hardware

Cache thrashing: Number of accessed cachelines (i.e., number of
partitions) is greater than the cache capacity

Page thrashing (in last lecture): Number of accessed pages (i.e.,
number of partitions) is greater than the memory capacity
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Optimizing Join in Main-Memory DBMS

Intuitive solution: Partition tables
into shards that fit in SRAM cache
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Fragmentation

Relation R

—

i
Page | i 0 i :
i i i i i

Partition 1 Partition 2 Partition 3 Partition N

How to track location and size for different partitions?
— Frequent memory allocation (e.g., malloc) is expensive
— Loss of memory capacity due to fragmentation
— Problem becomes worse if multiple passes of partitioning is needed
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Radix Partitioning 28 uders.

Cluster on the lower B bits of the integer
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Radix Partitioning

57
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ass 1 (2 bits)
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(000)
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(010)
(001)

00 (001)
(001)
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101)
(111)
(110)

Cluster on the lower B bits of the integer
hash-value of the partition key

— For pass p, use B, bits for partitioning

— Start with left most bits

The output array of Radix partitioning has
identical structure as the input array

—No complex memory allocation

— No fragmentation
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Radix Partitioning

ﬂzss 1 (2 bits)

(001) -+

Cluster on the lower B bits of the integer
hash-value of the partition key

— For pass p, use B, bits for partitioning
(001) — Start with left most bits
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101) Q: How to know where to write in the output
(111) array? (e.g., 47 in the example)

(110) — Need to scan the array twice: first time collect
size per partition

The output array of Radix partitioning has
identical structure as the input array

— No complex memory allocation

— No fragmentation
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Radix Partitioning

(001)
(001)
(011)
(111)
(100)

ﬂzss 1 (2 bits)

(001)
(001)
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(000)
(001)

(001)
(100)
(110)
(000)
(101)

(011)
(010)
(100)
(100)
(101)

(010)
(001)

(111)
(110)

First scan

- “10”: 3 records
- “11”: 2 records

Q: How to know where to write in the output
array? (e.g., 47 in the example)
— Need to scan the array twice; first time collect

size per partition
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Radix Partitioning

First scan Write location in output buffer
ﬂ's‘“ (2 bits) — “00’ cords ~ “00”: entry 0_
(001) (001) — “01”®'§cords - ‘01" entry 5_
(001) (001) - “10”: 3 records —-10":entry 5 + 2
(011) (001) - “11”: 2 records - “11"entry5+2+ 3
e (o S~— — Prefix Sum
(100) (001) —_—

(001)
(100)
(110)
(000)
(101)
(010)
(001)

(011)
(010)
(100)

o, Q: How to know where to write in the output

(111) array? (e.g., 47 in the example)

(110) — Need to scan the array twice; first time collect
Size per partition
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Radix Partitioning

ﬂzss 1 (2 bits)

(001)
(001)
(000)
(001)
(011)
(010)
(100)
(100)
(101)
(111)
(110)

First scan Write location in output buffer
— “00”: 5 records — “00”: entry O
— “01”: 2 records — “01”: entry 5
— “10”: 3 records - “10”: entr—y—5-+ 2
— “11”: 2 records - “11"entry5+2+ 3
~— —~ Prefix Sum

Second scan: write to corresponding
location in the output buffer

Q: How to know where to write in the output
array? (e.g., 47 in the example)
— Need to scan the array twice; first time collect

size per partition
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Radix Partitioning
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Similar to GRACE hash join, join the
corresponding partitions from the two relations

Can use either hash join or nested-loop join

<~

Discussion Question:
Can we use sort merge join for the
two relations?
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Evaluation: Radix Clustering
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Evaluation: Join Performance
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Nested-loop join prefers small partitions

Hash-join achieves similar performance
for a range of partition sizes
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millisecs

Evaluation: Overall
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A Different View Point

Design and Evaluation of Main Memory
Hash Join Algorithms for Multi-core CPUs

Spyros Blanas Yinan Li Jignesh M. Patel
University of Wisconsin—Madison
{sblanas, yinan, jignesh}@cs.wisc.edu

ABSTRACT

The focus of this paper is on investigating efficient ha:
algorithms for modern multi-core processors in main mem-
ory environments. This paper dissects each internal phase
of a typical hash join algorithm and considers different al-
ternatives for implementing each phase, producing a family
of hash join algorithms. Then, we implement these main
memory algorithms on two radically different modern multi-
processor systems, and carefully examine the factors that
impact the performance of each method.

Our ana

is reveals some interesting results - a ves

ple hash join algorithm is very competitive to the other
more complex methods. This simple join
shared hash table and does not partition the input relations.
Its simplicity implies that it requires fewer parameter set-
tings, thereby making it far easier for query optimizers and
execution engines to use it in practice. Furthermore, the
performance imple algorithm improves dramatically
as the skew in the input data increases, and it quickly starts
to outperform all other algorithms. Based on our results,
we propose that database implementers consider adding this
simple join algorithm to their repertoire of main memory
join algorithms, or adapt their methods to mimic the strat-
egy employed by this algorithm, especially when joining in-
puts with skewed data distributions.

orithm builds a

Categories and Subject Descriptors

H.24. [Database Management):
ssing, Relational databases

Systems— Query pro-

General Terms

Algorithms, Design, Performance

Keywords

hash join, multi-core, main memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, 1o post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD'11, June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 97! 106 ..$10.00.

3-0¢

NTRODUCTION

Large scale multi-core processors are imminent. Modern
ors today already have four or more cores, and for the
w years Intel has been introducing two more cores
r roughly every 15 months. At this rate, it
is not hard to imagine running database management sys-
tems (DBMSs) on processors with hundreds of cores in the
near future. In addition, memory prices are continuing to
drop. Today 1TB of memory costs as little as $25,000. Con-
sequently, many databases now either fit entirely in main
memory, or their working set is main memory resident. As
a result, many DBMSs are becoming CPU bound

In this evolving architectural landscape, DBMSs have the
unique opportunity to leverage the inherent parall
is provided by the relational data model. Data is
by declarative query languages to user appl:
DBMS is free to choose its execution strategy. Coupled
with the trend towards impending very large multi-cores,
this implies that DBMSs must carefully rethink how they
can exploit the parallelism that is provided by the modern
multi-core processors, or DBMS performance will stall
natural question to ask then is whether there is anything
new here. Beginning about three decades ago, at the incep-
tion of the field of parallel DBM:
thoroughly examined how a DBMS can use various forms of
paral
nothing, shared-memory, and shared disk architectures [17]
If the modern multi-core architecture:
architectural templates, then we can s
ods that have already been designed.

In fact, to a large extent this is the approach that DBM
have haven taken towards dealing with multi-core machines
Many commercial DBMSs simply treat a multi-core proces-
mmetric mu SMP) machine, lever-

ism that

exposed

ations and the

the database community

lelism. These forms of parallelism include pure shared-

res
mply adopt the meth-

smble any of these

ras a
aging previous work that was done by the DBMS vendors
in reaction to the increasing popularity of SMP machines

decades ago. These methods break up the task of a single
operation, such as an equijoin, into disjoint parts and allow
each processor (in an SMP box) to work on each part in-
dependently. At a high-level, these methods resemble vari-
ations of query processing techniques that were developed
for parallel shared-nothing architectures [6], but adapted
for SMP machines. In most commercial DBMS, this ap-
proach the entire design process, ranging
from system internals (j ng, for example) to their
pricing model, which is ing the SMP
pricing model. On the other hand, open-source DBMSs have

reflected acros

proces:

equently done by

SIGMOD 2011

12 years later
Multicore processors

Two design considerations

— minimizing the number of processor cache
misses => Radix Join

— minimizing processor synchronization costs
=> No partition hash join
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Evaluation on Multicore
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Other Topics
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Dictionary encoding

— Many other encoding/compression
schemes exist. E.g., bit-packing,
delta encoding, RLE, etc.



Radix Join — Comments and Q/A

Radix join ensures tuples with same join key belong to same cluster?
Radix join assumes attributes stored as compact integer array?
Disadvantage of radix join?

Why having a shared hash table efficient for skewed data?

Common approach to use analytical model?

How to pick best parameters? (configurations vary across machines)
CPU speed improvement is also slowing down now.

Can radix join make use of modern hierarchical memory systems?

Core idea of radix-join portable to other operators?
38



Group Discussion

We want to join three tables, S > R < T. Assume S is large but R and
T are relatively small (but larger than CPU cache). Assume the two
joins are on different join keys. Would you use non-partitioned hash join
or radix join for this query? Please justify your choice.
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Before Next Lecture

Submit review for

Hong-Tai Chou, David DeWitt, An Evaluation of Buffer
Management Strategies for Relational Database Systems.
Algorithmica, 1986
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