WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 4: Buffer Management

Xiangyao Yu
9/19/2021

Group Discussion (Last Lecture)

We want to join three tables, S <t R b<i T. Assume S is large but R and
T are relatively small (but larger than CPU cache). Assume the two

joins are on different join keys. Would you use non-partitioned hash join
or radix join for this query? Please justify your choice.

S——> -, —) QQMT) b S

(‘\7

Today’s Paper: Buffer Management

Algorithmica (1986) 1: 311-336 Tgc)m

© 1986 Springer-Verlag New York Inc

An Evaluation of Buffer Management Strategies for
Relational Database Systems'

Hong-Tai Chou®* and David J. DeWitt®

Abstract. In this paper we present a new algorithm, DBMIN, for managing the buffer pool of a

lational system. DBMIN is based on a new model of relational query
behavior, the query locality set model (QLSM). Like the hot set model, the QLSM has an advantage
over the stochastic models due to its ability to predict future reference behavior. However, the QLSM
avoids the potential problems of the hot set model by ser ing the modeling of behavior
from any particular buffer management algorithm. After introducing the QLSM and describing the

DBMIN algorithm, we present a per hodol for evaluating buffer manage-
ment algorithms in a Iti i This hodology ployed a hybrid model that
combines features of both trace-driven and distribution-driven simulation models. Using this model,
the performance of the DBMIN algorithm in a multi envi is compared with that of the

hot set algorithm and four more traditional buffer replacement algorithms.

Key Words. Buffer management, Database systems, Page repl. gies, Hybrid simul
Performance evaluation.

1. Introduction. In this paper we present a new algorithm, DBMIN, for manag-
ing the buffer pool of a relational database management system. DBMIN is based
on a new model of relational query behavior, the query locality set model (QLSM.)
Like the hot set model [Sacc 1], the QLSM has an advantage over stochastic
models due to its ability to predict future reference behavior. However, the QLSM
avoids the potential problems of the hot set model by separating the modeling
of reference behavior from any particular buffer management aigorithm. After
introducing the QLSM and describing the DBMIN algorithm, the perform-
ance of the DBMIN algorithm in a multiuser environment is compared with
that of the hot set algorithm and four more traditional buffer replacement
algorithms.

A number of factors motivated this research. First, although Stonebraker [Ston
2] convincingly argued that conventional virtual memory page replacement
algorithms (e.g., least recently used (LRU)) were generally not suitable for a

! This research was partially supported by the Department of Energy under Contract No. DE-AC02-
81ER10920 and the National Science Foundation under grant MCS82-01870.

2 Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, USA.

3 Current Address: Mi 1 ics and C Te Corp i Austin, Texas, USA.

Received March 15, 1986; revised July 7, 1986. Communicated by Dale Skeen.

Parts of this article have been reprinted with permission by the *“Very Large Data Base Endowment.”

Algorithmica 1986

Agenda

Buffer management basics
Query locality set model (QLSM)

[o — R

DBMIN algorithm_
Evaluation

Buffer Management Basics

Basic Concepts

A database management system (DBMS)
CPU manipulate data in memory

— Data on disk must be loaded to memory before
processed

Buffer | Buffer | Buffer

The unit of data movement is a page

Memory Q dission |
— Page replacement policy (what pages should stay
— in memory?)
Page —- LRU (Lease recently used) b
Disk (8KB) — Clock
— MRU (Most recently used)
— — FIFO, Random, ... \1)

LRU Replacement

Replace the least-recently used (LRU) item in the buffer

Intuition: more recently used items will more likely to be used again in the future

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory Incoming requests
o | | ~—| 3 0,1,2,3,01,24,01,25, ...
— N
—~_ -
Disk

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0

Page 1

Page 2

Page 3

)

—
S~

Disk

7)

]

Incoming requests

0,1,2,3,0,1,2,4,0,1,2,5, ...
J1I)

Cold start misses: load pages
0—3 to memory

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0

Page 1

Page 2

Page 3

—
S~

Disk

—
]

Incoming requests

6:+23;0,1,2,4,0,1,2,5, ...

Cache hits on pages 0-2

10

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 4
Page3
-~ N
N— A
Disk
N— -

Incoming requests

Page 4 replaces page 3 in the buffer
since page 3 is the least-recently
used page

11

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0 | Page 1

Page 2 | Page 4

—
S~

—
]

Disk

Incoming requests

Cache hits on pages 0-2

12

LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 5
Page4
-~ N
N— A
Disk
N— -

Incoming requests

A

Page 5 replaces page 4 in the buffer
since page 4 is the least-recently
used page

13

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory
— N
N~ -
Disk
N~ -

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...
—>

14

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 0

Page 1

Page 2

Page 3

—
S~

Disk

—
]

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...

Cold start misses: load pages
0—3 to memory

15

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory
Page 4 | Page 1 | Page 2 | Page 3
Page O
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..
J

Page 4 replaces page 0 since page O is
the least-recently used page

16

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 4

Page 0

Page 2

Page 3

Paget
—
N—

Disk

v

Incoming requests

6:+23:4,0,1,2,3,4, ...

]

Page O replaces page 1 since page 1 is
the least-recently used page

17

A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory

Page 4 | Page 0 | Page 2 | Page 3

Paget
—
N—

v

Disk

Incoming requests

6:+23:4,0,1,2,3,4, ...

Page O replaces page 1 since page 1 is
the least-recently used page

Each future access will replace the
page that will be immediately
accessed, and all accesses are misses

18

MRU Replacement

Replace the most-recently used (LRU) item in the buffer

Intuition: avoid the cache thrashing problem in the previous example

19

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 3
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..

20

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 2 | Page 4
Page3
-~ N
N— A
Disk
N— -

Incoming requests

04+23,4,0,1,2,3,4, ..

Page 4 replaces page 3 since page 3 is
the most-recently used page

21

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory

Page 0 | Page 1 | Page 2 | Page 4

]

—
S~

—
]

Disk

Incoming requests

Cache hits on pages 0-2

22

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 3 | Page 4
Page 2
-~ N
N— A
Disk
N— -

Incoming requests

—

Page 3 replaces page 2 since page 2 is
the most-recently used page

23

MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
Page O | Page 1 | Page 3 | Page 4
Page 2
-~ N
N— A
Disk
N— -

Incoming requests

0142340123, 4, ..

Page 3 replaces page 2 since page 2 is
the most-recently used page

/ LRU: all accesses are misses
/ MRU: 25% of accesses are misses

Selection of replacement policy depends

on the data access pattern o4

Insight

The optimal buffer replacement and allocation policies depend on
the data access pattern

The data access pattern is relatively easy to predict in a DBMS
compared to hardware or OS

25

Query Locality Set Model (QLSM)

Query Locality Set Model

Observations
— DBMS supports a limited set of operations
— Data reference patterns are regular and predictable
— Complex reference patterns can be decomposed into simple patterns

27

Query Locality Set Model

Observations
— DBMS supports a limited set of operations
— Data reference patterns are regular and predictable
— Complex reference patterns can be decomposed into simple patterns

Reference pattern classification
— Sequential v
— Random
— Hierarchical \ /

Locality set: the appropriate buffer pool size for each query

28

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page =

; RAepIacement policy: any

29

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page
— Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
— E.g., sort-merge join with duplicate join keys
— Locality set: size of largest cluster
— Replacement policy: LRU or FIFO (buffer size = cluster size), %BU (otherwise)

VE—

R

0p

4/‘.

30

QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page
— Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
— E.g., sort-merge join with duplicate join keys
— Locality set: size of largest cluster
— Replacement policy: LRU or FIFO (buffer size = cluster size), MRU (otherwise)

Looping Sequential (LS): repeatedly read something sequentially
— E.g. nested-loop join

— Locallty set: size Qf the file being repeated scanned.

— Replacement pollcy MRU

31

QLSM — Random References

Independent random (IR): truly random accesses
) -E.g., ingiexvscan through a non-clustered (e.g., secondary) index
— Locality set: one page or b pages (b unique pages are accessed in total)
— Replacement: any

32

QLSM — Random References

Independent random (IR): truly random accesses
— E.g., index scan through a non-clustered (e.g., secondary) index

— Locality set: one page or b pages (b unique pages are accessed in total)
— Replacement: any

Clustered random (CR): random accesses with some locality

- E.g., join between non-clustered. non-unique index as inner relation and
clustered, non-unique outer relation

— Locality set: size of the largest cluster S

~— : 0
— Replacement policy : R.index i
LRU or FIFO (buffer size = cluster size)]
MRU (otherwise) 1] 1 >

¥ g

33

QLSM — Hierarchical References

Straight hierarchical (SH): single traversal of the index
— Similar to SS ‘ .

Hierarchical with straight sequential (H/SS): traversal followed by straight
sequential on leaves

~ Similar to SS fé

Hierarchical with clustered sequential (H/CS): traversal followed by

clustered sequential on leaves
— Similar to CS

Looping hierarchical (LH): repeatedly traverse an index

— Example: index nested-loop join
— Locality set: first few layers in the B-tree
— Replacement: LIFO ,

e

34

Summary of Reference Patters
mm

Straight sequential (SS)
Clustered sequential (CS)

Looped sequential (LS)

Independent random (IR)
Clustered random (CR)

Straight hierarchical (SH)

Hierarchical with straight
sequential (H/SS)

Hierarchical with clustered
sequential (H/CS)

Looping hierarchical (LH)

File scan

Sort-merge join with duplicate keys
Nested-loop join

non-clustered index scan

Non-clustered, non-unigue index as
inner relation in a join

Single index lookup

Index lookup + scan

Index lookup + clustered scan

Index nested-loop join

1 page
Cluster size
Size of scanned file
< Size of scanned file
lorb

Same as CS

Same as SS

Same as CS

First few layers in the B-tree

LRU/FIFO
LRU
MRU

any

LIFO

35

DBMIN algorithm

DBMIN

For each open file operation
— Allocate a set of buffers (i.e., locality set)
— Choose a replacement policy
— Each open file instance has its own set of buffers
— If two file instances access the same page, they share the page

C

Predicatively estimate locality set size by examining the query plan
and database statistics

i
Admission control: a query is allowed to run if its locality sets fit in free
frames

37

Other Buffer Management Algorithms

Simple Algorithms

Replacement discipline is applied globally to all the buffers in the

system
__—RAND___
= FIFO (first-in, first-out)
__—-CLOCK

39

Sophisticated Algorithms

Replacement discipline is applied locally to each query or file instance
— HOT (the hot set algorithm): always using LRU
— WS (the working set algorithm)
— Domain separation: LRU within each domain (e.g., an index level)

40

Evaluation

THROUGHPUT
0.50 + -—— RAND

Except DBMIN and HOT,
performance of all the other
algorithms thrashes at high
concurrency

DBMIN outperforms HOT

: | | % | ——+ NC
048121620242832Q

41

Q/A — Buffer Management

Modern relational DB buffer management policies are the same?
Eelatlonal vs. non-relational buffer management?

WCess patterns? Automated with ML?
Need multiple buffers to support multiple users?

| Shoul)d buffer management be more concerned about heterogeneous
memory latency?

_How to supgort updates?

42

Group Discussion

In a conventional disk-based system, the bandwidth and latency gaps
between DRAM and disks are large. Modern storage devices like non-
volatile memory (NVM) have (1) bandwidth and latency close to DRAM
and (2) byte-addressability. How do NVM devices change buffer
management in a DBMS?

43

Wisconsin DB Affiliates Workshop

Time: Thursday 8724w — &ico pn.
Location: Northwoods (Union South 3 Floor)

Workshop contents
— Research highlight talk from faculty member
— Research talks from PhD students
— Pitch talks from industry

— Poster session

— Discussion with industry partners including AWS, Databricks, Google,
MatrixOrigin, Microsoft, Oracle, Snowflake, TiDB

Can also attend on zoom

44

Before Next Lecture

Submit review for
Viktor Leis, et al., LeanStore: In-Memory Data Management

Beyond Main Memory. ICDE 2018

45

