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Today’s Paper: LeanStore
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Agenda
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Main-memory DB 
LeanStore design

– Pointer swizzling 
– Page replacement 
– Optimistic latching 

Experiments
Fine-grained in-memory data management 



Conventional DB Architecture
Page granularity: Data managed in 
page granularity 

Indirection: Use page ID to lookup 
hash table to locate a page
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Conventional DB Performance
Only a small fraction of instructions 
execute useful work

Significant instruction count 
dedicated to buffer management

5[1] Stavros Harizopoulos, et al., OLTP Through the Looking Glass, and What We Found There, SIGMOD 2008

¥
.



Main-Memory DB Architecture
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Fine-granularity: Fine-grained (e.g., 
tuple-level) data management 
No Indirection: reference data 
following pointers 



Main-Memory DB Architecture
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No Indirection: reference data 
following pointers 

Þ Focus of this paper
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Pointer Swizzling
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Pointer Swizzling

Pages that reside in main memory are directly referenced using 
virtual memory addresses (i.e., pointers)
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Pointer Swizzling

Pages that reside in main memory are directly referenced using 
virtual memory addresses (i.e., pointers)

Swip: the 8-byte memory location referring to a page
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Pointer Swizzling Design Constraints
Challenge 1: concurrency problem if a page is referrenced by 
multiple swips

– All references must be identified and changed atomically if the page is 
swizzled or unswizzled
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Pointer Swizzling Design Constraints
Challenge 1: concurrency problem if a page is referrenced by 
multiple swips

– All references must be identified and changed atomically if the page is 
swizzled or unswizzled

Solution: each page has a single owning swip
– In-memory data structures must be trees or forests
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Pointer Swizzling Design Constraints
Challenge 2: pages containing memory pointers should not be 
written to disk

– The pointers would not make sense if the system restarts
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Pointer Swizzling Design Constraints
Challenge 2: pages containing memory pointers should not be 
written to disk

– The pointers would not make sense if the system restarts
Solution: Never unswizzle a page that has swizzled children
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Pointer Swizzling Design Constraints
Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

ÞMust be able to iterate over all swips on a page
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Pointer Swizzling Design Constraints
Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

ÞMust be able to iterate over all swips on a page
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Pointer Swizzling Design Constraints
Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

ÞMust be able to iterate over all swips on a page
ÞMust be able to identify parent swip
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Pointer Swizzling Design Constraints
Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

ÞMust be able to iterate over all swips on a page
ÞMust be able to identify parent swip
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Page Replacement Background
Least Recent Used (LRU)
Clock replacement (aka second chance)

– An approximation of LRU
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Page Replacement Background
Least Recent Used (LRU)
Clock replacement (aka second chance)

– An approximation of LRU
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Page Replacement Background
Least Recent Used (LRU)
Clock replacement (aka second chance)

– An approximation of LRU
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When a page is accessed, set bit to 1
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Page Replacement Background
Least Recent Used (LRU)
Clock replacement (aka second chance)

– An approximation of LRU
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Look for page to replace
If the bit = 0: evict
If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

Updating tracking information for each 
page access is too expensive



Page Replacement — Cooling
Randomly add pages to cooling stage

– Cooling pages are unswizzled but not 
replaced

– Cooling pages enter a FIFO queue; a 
page is replaced if it reaches the end of 
the queue

– Upon an access, a cooling page is 
swizzled
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Page Replacement Comparison
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Look for page to replace
If the bit = 0: evict
If the bit = 1: set to 0 and move to 
next entry
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Page Replacement Comparison
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Discussion Question: 
Is clock replacement necessarily 
worse than cooling replacement?
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Clock replacement LeanStore replacement 

Look for page to replace
If the bit = 0: evict
If the bit = 1: set to 0 and move to 
next entry

When a page is accessed, set bit to 1
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Latching is Expensive
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Lock Coupling
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Optimistic Lock Coupling
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Epoch-Based Reclamation
Problem: reads do not block writes in optimistic locking

– A page is evicted or deleted while another thread is reading the page
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Epoch-Based Reclamation
Problem: reads do not block writes in optimistic locking

– A page is evicted or deleted while another thread is reading the page
Solution: Epoch-based reclamation

– Reclaim a page only if all threads have finished reading it
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Experiments
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Main-Memory DB Architecture
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CPU

Fine-Grained Buffer Management
Migrate tuples, instead of pages, 
between memory and disk

Challenges 
– Tracking all data in the system
– Avoid random writes to disk
– Identifying hot/cold data
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[1] Justin DeBrabant, et al., Anti-Caching: A New Approach to Database 
Management System Architecture. VLDB, 2013
[2] Ahmed Eldawy, et al., Trekking Through Siberia: Managing Cold Data in a 
Memory-Optimized Database. VLDB 2014
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Q/A – LeanStore

39

Drawbacks of LeanStore? 
– A hot page is constantly unswizzled?

Is scaling out bad in cloud environment?
What recovery guarantees does buffer management provide? 
Concurrency control in this paper? 
Predict pages for cooling instead of randomly picking? 
Why does latching have high overhead?
Is the hash table a bottleneck?



Wisconsin DB Affiliates Workshop
Time: Thursday, 8:30am–4pm
Location: Northwoods (Union South 3rd Floor)
Workshop contents

– Research highlight talk from faculty member 
– Research talks from PhD students
– Pitch talks from industry 
– Poster session
– Discussion with industry partners including AWS, Databricks, Google, 

MatrixOrigin, Microsoft, Oracle, Snowflake, TiDB

Can also attend on zoom:
https://uwmadison.zoom.us/j/95526978682?pwd=NWxTOXJGSDhiekhwdXBOcG9qMjVKdz09 
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Before Next Lecture
Submit review for

Patricia G. Selinger, et al., Access Path Selection in a 
Relational Database Management System. SIGMOD, 1979
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