WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 5: Modern Buffer Management

Xiangyao Yu
9/21/2021

Today’s Paper: LeanStore

LeanStore: In-Memory Data Management
Beyond Main Memory

Viktor Leis, Michael Haubenschild*, Alfons Kemper, Thomas Neumann

Technische Universitdt Miinchen
{leis, kemper, neumann}@in.tum.de

Abstract—Disk-based database systems use buffer managers
in order to transparently manage data sets larger than main
memory. This traditional approach is effective at minimizing
the number of /O operations, but is also the major source of
overhead in comparison with in-memory systems. To avoid this
overhead, i database systems abandon buffer
management altogether, which makes handling data sets larger
than main memory very difficult.

In this work, we revisit this fundamental dichotomy and design
a novel storage manager that is optimized for modern hardware.
Our evaluation, which is based on TPC-C and micro benchmarks,
shows that our approach has little overhead in comparison
with a pure in-memory system when all data resides in main
memory. At the same time, like a traditional buffer manager,
it is fully transparent and can manage very large data sets
effectively. Furthermore, due to low-overhead

Tableau Software®
mhaubenschild@tableau.com®

TPC-C [txnss]
8
2

04—

BerkeleyDB WiredTiger LeanStore In-memory

Fig. 1. Single-threaded in-memory TPC-C performance (100 warehouses).

Two ive prop for larger-
than- RAM data sets in main-memory systems are Anti-
Caching [7] and Siberia [8], [9], [10]. In comparison with a
traditional buffer manager, these approaches exhibit one major
weakness: They are not capable of maintaining a replacement
strategy over relatlonnl and index data. Either the indexes,

our implementation is also highly scalable on multi-core CPUs.
I. INTRODUCTION

Managing large data sets has always been the raison d’étre
for database systems. Traditional syslems cache pages using

which can a ifi fraction of the overall data
size [11], must always reside in RAM, or they require a separate
mechanism, which makes these techniques less general and

less than traditional buffer
Another reason for reconsidering buffer managers are the
PCle/M2-attached Solid State Drives

a buffer manager, which has p ledge of all page
accesses and transparently loads/evicts pages from/to disk. By
storing all data on fixed-size pages, arbitrary data structures,
including database tables and indexes, can be handled uniformly
and transparently.

While this design succeeds in minimizing the number of /'O
operations, ll mcurs a large overhead for in-memory workloads,
which are i In the ical buffer pool
implementation [1], each page access requires a hash table
lookup in order to translate a logical page identifier into an
in-memory pointer. Even worse, in typical implementations
the data structures involved are synchronized using multiple
latches, which does not scale on modern multi-core CPUs. As

(SSDs), whlch are block devices that require page-wise accesses.
These devices can access multiple GB per second, as they
are not limited by the relatively slow SATA interface. While
modern SSDs are still at least 10 times slower than DRAM in
terms of bandwidth, they are also cheaper than DRAM by a
similar factor. Thus, for economic reasons [12] alone, buffer
managers are becoming attractive again. Given the benefits of
buffer managers, there remains only one question: Is it possible
to design an efficient buffer manager for modern hardware?
ln thls work we answer this question affirmatively by
and g a highly efficient
slomge engine called LeanStore. Our design provides an

Fig. 1 shows, traditional buffer manager impl i like
BerkeleyDB or WiredTiger therefore only achieve a fraction
of the TPC-C performance of an in-memory B-tree.

This is why main-memory database systems like H-Store [2],
Hekaton [3], HANA [4], HyPer [5], or Silo [6] eschew buffer
management altogether. Relations as well as indexes are directly
stored in main memory and virtual memory pointers are used
instead of page identifiers. This approach is certainly efficient.
However, as data sizes grow, asking users to buy more RAM
or throw away data is not a viable solution. Scaling-out an in-
memory database can be an option, but has downsides including
hardware and administration cost. For these reasons, at some
point of any main-memory system’s evolution, its designers
have to implement support for very large data sets.

ICDE 2018

of similar functionality as a traditional buffer
manager, but without incurring its overhead. As Fig. 1 shows,
LeanStore’s performance is very close to that of an in-memory
B-tree when executing TPC-C. The reason for this low overhead
is that accessing an in-memory page merely involves a simple,
well-predicted if statement rather than a costly hash table
lookup. We also achieve excellent scalability on modern multi-
core CPUs by avoiding fine-grained latching on the hot path.
Overall, if the working set fits into RAM, our design achieves
the same performance as state-of-the-art main-memory database
systems. At the same time, our buffer manager can transparently
manage very large data sets on background storage and, using
modern SSDs, throughput degrades smoothly as the working
set starts to exceed main memory.

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

Conventional DB Architecture

Page granularity: Data managed in

eh CPU page granularity
as
table
Frame | Frame | Frame Indirection: Use page ID to lookup
e hash table to locate a page
Memory
—
\

Disk |Fage

Conventional DB Performance

1.8M -
1.6M -
1.4M -
1.2M -
1.0M -
8M -
M -
AM -
2M -

Instructions

16.2% hand-coded
optimizations

11.9% Iogging
16.3%

locking

0
2o latching

34.6%

buffer manager

168%_ _ _ | ---. useful work

Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a
main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-
cuting the transaction on a no-overhead kernel.

Only a small fraction of instructions
execute useful work

Significant instruction count
dedicated to buffer management

[1] Stavros Harizopoulos, et al., OLTP Through the Looking Glass, and What We Found There, SIGMOD 2008

Main-Memory DB Architecture

hash CPU CPU
table
Iframe Frame | Frame ‘/ \\\
B = <
Memory Memory

Fine-granularity: Fine-grained (e.g.,
tuple-level) data management

A
\

. Page
Disk) No Indirection: reference data
/‘ following pointers
~—_

Main-Memory DB Architecture

hash CPU
table
Frame | Frame =Frame
Memory
>
S~
Disk |a9e
)

CPU

//
K/
/
7

Memory

4
YL /

Fine-granularity: Fine-grained (e.g.,

tuple-level) data management

[

No Indirection: reference data
following pointers

]

= Focus of this paper

v

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

Pointer Swizzling

hash table root: P1 page
& frame
N\ #|P1[6].]-
X
palal. P2 P4 P3
—_—
T>|P2]|6}.],

(a) traditional buffer manager

Pointer Swizzling

hgsh_table i root: P1 page root frame page
raﬁme P1
\>< P1[6].1 =
/| P3
pal6 L. P2 P4 P3 (;2
—_—
- P2 P4
== |P2| 6}.. \\ = =
(a) traditional buffer manager (b) swizzling-based buffer manager

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)

Pointer Swizzling

hgsh_table i root: P1 page root frame page
raﬁme P1
\>< P1[6].1 =
/| P3
palal. P2 P4 P3 (;2
—_—
- P2 P4
== |P2| 6}.. \\ = =
(a) traditional buffer manager (b) swizzling-based buffer manager

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)

Swip: the 8-byte memory location referring to a page

Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referrenced by
multiple swips

— All references must be identified and changed atomically if the page is
swizzled or unswizzled

swip 1 Swip 2

(swizzled) \ / (unswizzled)

12

Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referrenced by
multiple swips

— All references must be identified and changed atomically if the page is
swizzled or unswizzled

Solution: each page has a single owning swip
— In-memory data structures must be trees or forests

SWiIp \ / SV%
SlezIed (un led)

13

Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

— The pointers would not make sense if the system restarts

swizzled

unswizzled

Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

— The pointers would not make sense if the system restarts
Solution: Never unswizzle a page that has swizzled children

swizzled

unswizzled

15

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page

swizzled

D Q)
[\

swizzled unswizzled 16

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page

1. P4 is randomly selected//\k
for speculative unswizzling _ hot swizzled

2. the buffer manager iterates E’ {P5 @ Q
over all swips on the page\ Imﬁ%:*
3. it finds the swizzled child / \
page P6 and unswizzles \\\ \
it instead
Pe[\ hot P9 hot

O P

swizzled unswizzled 17

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page
—Must be able to identify parent swip

swizzled

folo)
/AN

/ \

swizzled unswizzled

18

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page
—Must be able to identify parent swip

For example: B+-trees cannot have
link pointer

19

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

20

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

21

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

[
2

1

1

B
Y

22

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

Look for page to replace
If the bit = O: evict
If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

[
2

1

B
Y

23

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

Look for page to replace
If the bit = O: evict
If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

-

Updating tracking information for each
page access is too expensive

[
2

1

B
Y

24

Page Replacement — Cooling

Randomly add pages to cooling stage

— Cooling pages are unswizzled but not
replaced

— Cooling pages enter a FIFO queue; a
page is replaced if it reaches the end of
the queue

— Upon an access, a cooling page is
swizzled

load,
swizzle

cooling

(RAM)

unswizzle

25

Page Replacement Comparison

Clock replacement

1 1

(o7 0
2

1 0

Look for page to replace
If the bit = 0: evict
If the bit = 1: set to 0 and move to
next entry

When a page is accessed, set bit to 1

LeanStore replacement

load,
swizzle

cooling

(RAM)

unswizzle

26

Page Replacement Comparison

Clock replacement

[
2

1 1

1 0

Look for page to replace
If the bit = 0: evict
If the bit = 1: set to 0 and move to
next entry

When a page is accessed, set bit to 1

LeanStore replacement

load,
swizzle

cooling

(RAM)

unswizzle

Discussion Question:
Is clock replacement necessarily
worse than cooling replacement?

27

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

28

Latching is Expensive

1.8M -
16M - 16.2% hand-coded
optimizations
1.4M - 11.9% logging
1.2M - 16.3%
2 locking
9 1.0M +
é M 4 142% " Jatching
(72} 0
£ oM - 34.6%
4M - buffer manager
2M -
L T useful work

Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a
main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-
cuting the transaction on a no-overhead kernel.

29

Lock Coupling

traditional

1.
2.

(62 B~ N Ob)

© © N O

lock node A
access node A

. lock node B
. unlock node A
. access node B

lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

30

Optimistic Lock Coupling

traditional

1.
2.

(62 I~ N ¢b)

O© 00N O

lock node A
access node A

. lock node B
. unlock node A
. access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

—

optimistic

. read version v3

2. access node A

w

. read version v7

4. validate version v3

)]

©O© 00 NO®

. access node B

. read version v5

. validate version v7
. access node C

. validate version v5

31

Epoch-Based Reclamation

Problem: reads do not block writes in optimistic locking
— A page is evicted or deleted while another thread is reading the page

32

Epoch-Based Reclamation

Problem: reads do not block writes in optimistic locking
— A page is evicted or deleted while another thread is reading the page

Solution: Epoch-based reclamation
— Reclaim a page only if all threads have finished reading it

hash table

<

FIFO : [P2] cooling

...........................

éthread-local epochs

queue/; = e9

ét [Pz~ : = 1€ o0
: e

e4 . &2

P8 | P8 cooling

. epoch
:manager

Fig. 6. Epoch-based reclamation.

global epoch

thread 1
thread 2
thread 3

e9

33

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

34

Experiments

TPC-C throughput [txns/sec]

60K 4
40K - 5
o
20K - a
04 30K 48K 62K 67K
600K 4
400K A =
=
o
200K 2
ol 18K 23K 109K so7K |
baséline +swi£z|ing +|ean' evict +opt.-Iatch
(traditional) (LeanStore)
Fig. 7. Impact of the 3 main LeanStore features.

in-memory B-tree

‘ LeanStore

TPC-C throughput [txns/sec]
S
o
&

Fig. 8.

WiredTiger
; 4 tBerkeIeyDB
1 5 10 15 20
threads

Multi-threaded, in-memory TPC-C on 10-core system.

35

Agenda

Main-memory DB

LeanStore design
— Pointer swizzling
— Page replacement
— Optimistic latching

Experiments
Fine-grained in-memory data management

36

Main-Memory DB Architecture

hash CPU
table
Frame | Frame =Frame
Memory
5
S~
Disk |a9e
)

CPU

//
K/
/

7

Memory

4
YL /

[

Fine-granularity: Fine-grained (e.g.,
tuple-level) data management

]

No Indirection: reference data
following pointers

37

Fine-Grained Buffer Management

Migrate tuples, instead of pages,

between memory and disk
CPU
Challenges e~
— Tracking all data in the system 7=
— Avoid random writes to disk ’ ; Hot
. Memory record in
— ldentifying hot/cold data
— page
N— /
_ Page /
Disk)
v
1] Justin DeBrabant, et al., Anti-Caching: A New A h to Datab
{\/Izangcslerr]neﬁt ge\‘/s?enmeArghitec?’[ure.a \C/LI?)%, 20163 SRR \ /
[2] Ahmed Eldawy, et al., Trekking Through Siberia: Managing Cold Data in a 38

Memory-Optimized Database. VLDB 2014

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/anticaching.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/siberia.pdf

Q/A — LeanStore

Drawbacks of LeanStore?
— A hot page is constantly unswizzled?

Is scaling out bad in cloud environment?

What recovery guarantees does buffer management provide?
Concurrency control in this paper?

Predict pages for cooling instead of randomly picking?

Why does latching have high overhead?

Is the hash table a bottleneck?

39

Wisconsin DB Affiliates Workshop

Time: Thursday, 8:30am—4pm
Location: Northwoods (Union South 3 Floor)

Workshop contents
— Research highlight talk from faculty member
— Research talks from PhD students
— Pitch talks from industry
— Poster session

— Discussion with industry partners including AWS, Databricks, Google,
MatrixOrigin, Microsoft, Oracle, Snowflake, TiDB

Can also attend on zoom:
https://uwmadison.zoom.us/j/95526978682 ?pwd=NWxTOXJGSDhiekhwdXBOcG9gMjVKdz09

40

Before Next Lecture

Submit review for
Patricia G. Selinger, et al., Access Path Selection in a

Relational Database Management System. SIGMOD, 1979

41

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/selinger.pdf

