WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 6: Query Optimization

Xiangyao Yu
9/26/2022

Announcement

Updated schedule

10/12 Guest lecture from TiDB
10/24 Guest lecture from Oracle

11/7 Midterm review
11/9 Midterm exam

Course project

Proposal deadline is 10/24. Please start to form teams (2—4 people) asap.

Today’s Paper: Query Optimization

Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. Astrahan
D. D. Chamberlin
R. A. Lorie
T. G. Price

IBM Research Division,

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-

cation of desired data as a boolean
expression of predicates. System R is an
experimental database management system

developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose
Research Laboratory.

1. Introduction

System R is an experimental database man-
agement system based on the relational
model of data which has been under develop-
ment at the IBM San Jose Research Laboratory
since 1975 <1>. The software was developed
as a research vehicle in relational data-
base, and is not generally available out-
side the IBM Research Division.

This paper assumes familiarity with rela-
tional data model terminology as described
in Codd <7> and Date <8>. The user interface
in System R is the unified query, data def-
inition, and manipulation language SQL <5>.
Statements in SQL can be issued both from an
on-line casual-user-oriented terminal
interface and from programming languages
such as PL/I and COBOL.

In System R a user need not know how the
tuples are physically stored and what
access paths are available (e.g. which col-
umns have indexes). SQL statements do not
require the user to specify anything about
the access path to be used for tuple
retrieval. Nor does a user specify in what
order joins are to be performed. The System
R optimizer chooses both join order and an

Copyright © 1979 by the ACM, Inc., used by permission. Permis-
sion to make digital or hard copies is granted provided that copies
are not made or distributed for profit or direct commercial advan-
tage, and that copies show this notice on the first page or initial
screen of a display along with the full citation.

Originally published in the Proceedings of the 1979 ACM SIGMOD
i C on the of Data.

Digital recreation by Eric A. Brewer, brewer@cs.berke-
ley.edu, October 2002.

San Jose, Ca

23

ifornia 95193

access path for each table in the SQL state-
ment. Of the many possible choices, the
optimizer chooses the one which minimizes
“total access cost” for performing the
entire statement.

This paper will address the issues of

access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) is treated similarly. Section 2

will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the
optimizer cost formulas are introduced for
single table queries, and section 5 dis-
cusses the joining of two or more tables,
and their corresponding costs. Nested que-
ries (queries in predicates) are covered in
section 6.

2. Processing of an SQL statement

A SQL statement is subjected to four
phases of processing. Depending on the ori
gin and contents of the statement, these
phases may be separated by arbitrary inter-
vals of time. In System R these arbitrary
time intervals are transparent to the sys-
tem components which process a SQL state-
ment. These mechanisms and a description of
the processing of SQL statements from both

programs and terminals are further dis-
cussed in <2>. Only an overview of those
processing steps that are relevant to
access path selection will be discussed
here

The four phases of statement processlng
are parsing, optimization, code generation,
and execution. Each SQL statement is sent to
the parser, where it is checked for correct
syntax. A guery block is represented by a
SELECT list, a FROM list, and a WHERE tree,
containing, respectively the list of items
to be retrieved, the table(s) referenced,
and the boolean combination of simple pred-
icates specified by the user. A single SQL
statement may have many query blocks
because a predicate may have one operand
which is itself a query.

If the parser returns without any errors
detected, the OPTIMIZER component is
called. The OPTIMIZER accumulates the names

SIGMOD 1979

Agenda

System R

Query Optimization in R
* Cost estimation
 Plan enumeration

System R

1. Parsing

2. Optimization

3. Code generation
4. Execution

Query Optimization

Query Optimizer
* Plan generator
° Plan cost eStlmatOl‘

\ optimized plan

Query Optimization in System R

System R Storage Architecture

RSICARD |
Truples Cost =10 cost + Computation cost
RSI Interface = #1/0s + W * RSICARD

RSS RSICARD = #tuples through the RSI interface

(Storage

Manager) : :

Goal: enumerate execution plans and pick

A the one with the lowest cost

4/L #1/0Os

]

Statistics

NCARD(T) # tuples in T
TCARD(T) # of pages containing tuples in T
P(T) Fraction of segment pages that hold tuples of T.
P(T) = TCARD(T) / # non-empty pages in the segment
ICARD(I) # distinct keys 1n the index I
NINDEX(I) # pages 1n index I
High key value and

low key value

Modern systems Keep histogram on table attributes.

Access Paths

Segment Scans

* A segment contains disk pages that can hold tuples from multiple relations

« Segment scan is a sequential scan of all the pages

Page1 | A{...}
B{...}
Page2 | A{...}
Page3 | B{...}
Page4 | A{...}
B{...}

10

Access Paths

Segment Scans

* A segment contains disk pages that can hold tuples from multiple relations

« Segment scan is a sequential scan of all the pages

Index Scan
» Clustered index scan
* Non-clustered scan
« Scan with starting and stopping key values

Page1 | A{...}
B{...}
Page2 | A{...}
Page3 | B{...}
Page4 | A{...}
B{...}

11

Predicates

Sargable predicates (Search ARGuments-able)
 Predicates that can be filtered by the RSS
* l.e., column comparison-operator value

« Where clause of query is put in Conjunctive Normal Form (CNF): term AND
term AND term

« Each term is called a boolean factor

12

Predicates

Sargable predicates (Search ARGuments-able)
 Predicates that can be filtered by the RSS
* l.e., column comparison-operator value

« Where clause of query is put in Conjunctive Normal Form (CNF): term AND
term AND term

« Each term is called a boolean factor

Examples of non-sargable
» function(column) = something
» column1 + column2 = something
» column + value = something
e columni1 > column2

13

Predicates

Sargable predicates (Search ARGuments-able)
 Predicates that can be filtered by the RSS
* l.e., column comparison-operator value

« Where clause of query is put in Conjunctive Normal Form (CNF): term AND
term AND term

« Each term is called a boolean factor

A predicate matches an index if
1. Predicate is sargable

2. Columns referenced in the predicate match an initial subset of attributes of
the index key

Example: B-tree Index on (name, age)
predicate1: name="xxx’ and age="17
predicate2: age='17’ not match

14

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

15

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

column = value
* If index exists F = 1/ICARD(index) # distinct keys
e else 1/10

16

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

column = value
* If index exists F = 1/ICARD(index) # distinct keys

e else 1/10

column1 = column2
* 1/ Max(ICARD(columnl index), ICARD(column2 index))

17

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

column = value
* If index exists F = 1/ICARD(index) # distinct keys

e else 1/10

column1 = column2
* 1/ Max(ICARD(columnl index), ICARD(column2 index))

Assumes each key value in the index with the smaller cardinality has a matching

value in the other index
For each record in relation 1, (NCARD2 / ICARD2)

tuples in relation 2 will satisfy the predicate

Total number of selected tuples =
(NCARD2 * NCARD1) / ICARD2

F=1/ICARD2

ICARD1 < ICARD2

18

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

column = value
* If index exists F = 1/ICARD(index) # distinct keys

e else 1/10

column1 = column2
* 1/ Max(ICARD(columnl index), ICARD(column2 index))

column > value
* F = (high key value - value) / (high key value — low key value)

19

Computation cost: RSICARD

Calculate the selectivity factor F for each boolean factor/predicate

column = value

* If index exists F = 1/ICARD(index) # distinct keys
* else 1/10

column1 = column2
* 1/ Max(ICARD(columnl index), ICARD(column2 index))

column > value

* F = (high key value - value) / (high key value — low key value)
pred1 and pred2

 F=F(predl) * F(pred2)
pred1 or pred2

 F=F(predl) + F(pred2) — F(predl) * F(pred2)

Not pred
 F=1-F(pred)

20

|O cost

Calculate the number of pages access through 10

21

|O cost

Calculate the number of pages access through 10

segment scan
 IO=TCARD(T)/P # segment pages

22

|O cost

Calculate the number of pages access through 10

segment scan
 IO=TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
* 10 =1 data page + 1-3 index page

23

|O cost

Calculate the number of pages access through 10

segment scan
 IO=TCARD(T)/P # segment pages
unique index matching (e.g., EMP.ID = ‘123’)
* 10 =1 data page + 1-3 index page

clustered index matching
* 10 =F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

24

|O cost

Calculate the number of pages access through 10

segment scan
 IO=TCARD(T)/P # segment pages
unique index matching (e.g., EMP.ID = ‘123’)
* 10 =1 data page + 1-3 index page
clustered index matching
* 10 =F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
* 10 =F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

25

|O cost

Calculate the number of pages access through 10

segment scan
 IO=TCARD(T)/P # segment pages
unique index matching (e.g., EMP.ID = ‘123’)
* 10 =1 data page + 1-3 index page
clustered index matching
* 10 =F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
* 10 =F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

clustered index no matching
« 10 = NINDEX(I) + TCARD(T)

26

Final Cost

Cost =10 cost + Computation cost
= #1/0s + W * RSICARD

27

Access Path Selection for Joins

RxS

Method 1: nested loops
* Tuple order within a relation does not matter

Method 2: merging scans
« Both relations sorted on the join key

28

Access Path Selection for Joins

RxS

Method 1: nested loops
* Tuple order within a relation does not matter

Method 2: merging scans
« Both relations sorted on the join key

Tuple order is an interesting order if specified by
« Group by
* Order by
» Equi-join key

Search space too large!

29

Search Space — Join Order
X
7\
X
VRN
X
7\
1

R4

R3

R R2

left-deep tree

Convention: right child is the inner relation

30

Search Space — Join Order
X
7\
X
VRN
X
7\
1

R4

R3
R R2

left-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

31

Search Space — Join Order

X X
VRN VRN
X R4 R4 X
VRN VRN
X R3 R3 X
VRN VRN
R1 R2 R2 R1
left-deep tree right-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

32

Search Space — Join Order

X 5 X
7\ VRN
X R4 5 / \ 5 R4 X
X / \ R3 / \ / \ R3 / \ X
/. R1 R2 R3 R4 /. '\
R1 R2 R2 R1
left-deep tree bushy tree right-deep tree

Convention: right child is the inner relation

For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

Bushy tree may produce cheaper plans but are rarely considered

due to the explosion of search space -

Search Space — Group By

Partial group by can also reduce cost

Example: t 100
E.DeptiD,D.Name

Gnuq)By‘ 10000
SELECT D.name, count(*) COUNT

FROM EMP as E, DEPT as D
WHERE E.DeptID = D.DeptID
GROUP BY D.name

E.DeptiD=D.DeptliD
Join 10000 x 100

E has 10000 tuples
D has 100 tuples

E: 10000 D: 100

Plan 1: Group by after join

34

Search Space — Group By

Partial group by can also reduce cost

Example: | |
E.DeptlD,D.Name 1 190 t 100

Group By Y10000
SELECT D.name, count(*) COUNT

FROM EMP as E, DEPT as D 100
WHERE E.DeptID = D.DeptID

E.DeptiD=D.DeptiD ;
GROUP BY D.name = ok E.Deplil v
Join 10000 x 100 10000 D: 100

E has 10000 tuples
D has 100 tuples

E.DeptID=D.DeptID
100x100

E: 10000 D: 100 E: 10000

Plan 1: Group by after join Plan 2: Group by before join

35

Q/A — Query Optimization

Modern query optimizers consider storage hierarchy and multicore?

Retain fast performance in the huge search space?
« Multi-user, multi-core, multi-tier storage, different operators, etc.

What about distributed system?
Modify query plans in the middle of execution?

36

Group Discussion

Q2.1 from CS764 Exam 2021

Consider the following schema and SQL query
Relation R (a, b): 10 million tuples, R.a is the primary key
Relation S (c, d): 100 million tuples, S.c is a foreign key referring to R.a

SELECT *
FROM R, S WHERE R.a = S.c AND R.d = 5;

c) [10 points] Please estimate the number of rows in the output relation using the
techniques in Selinger'79 (Lecture 6, Query Optimization).

37

Before Next Lecture

Submit review for

Mike Stonebraker, et al. C-store: a column-oriented DBMS,
VLDB 2005

38

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/cstore.pdf

