WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 7: Column Store

Xiangyao Yu
9/28/2022

Today’s Paper: C-Store

C-Store: A Column-oriented DBMS

Mike Stonebraker”, Daniel J. Abadi*, Adam Batkin*, Xuedong Chen', Mitch Cherniack",
Miguel Ferreira®, Edmond Lau®, Amerson Lin*, Sam Madden®, Elizabeth O‘Neil*,
Pat O’Neil, Alex Rasin’, Nga Tran*, Stan Zdonik"

*MIT CSAIL
Cambridge, MA

“Brandeis University
Waltham, MA

Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.
Among the many differences in its design are:
storage of data by column rather than by row,
careful coding and packing of objects into storage
including main memory during query processing,
storing an overlapping collection of column-
oriented projections, rather than the current fare of

tables and indexes, a non-traditional
impl ion of t ions which includes high
availability and pshot isolation for read-only

transactions, and the extensive use of bitmap
indexes to complement B-tree structures.

We present preliminary performance data on a
subset of TPC-H and show that the system we are
building, C-Store, is substantially faster than
popular commercial products. Hence, the
architecture looks very encouraging.

1. Introduction

Most major DBMS vendors implement record-oriented
storage systems, where the attributes of a record (or tuple)
are placed contiguously in storage. With this row store
architecture, a single disk write suffices to push all of the
fields of a single record out to disk. Hence, high
performance writes are achieved, and we call a DBMS
with a row store architecture a write-optimized system.
These are especially effective on OLTP-style licati

"UMass Boston
Boston, MA

*Brown University
Providence, RI

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read tly applicati include
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems. In
such environments, a column store architecture, in which
the values for each single column (or attribute) are stored
contiguously, should be more efficient. This efficiency
has been d d in the 1 marketplace by
products like Sybase IQ [FREN95, SYBA04], Addamark
[ADDAO04], and KDB [KDBO04]. In this paper, we discuss
the design of a column store called C-Store that includes a
number of novel features relative to existing systems.

With a column store architecture, a DBMS need only
read the values of col d for p ing a given
query, and can avoid bringing into memory irrelevant
attributes. In warehouse environments where typical
queries involve aggregates performed over large numbers
of data items, a column store has a sizeable performance
advantage. However, there are several other major
distinctions that can be drawn between an architecture that
is read-optimized and one that is write-optimized.

Current relational DBMSs were designed to pad
attributes to byte or word boundaries and to store values in
their native data format. It was thought that it was too
expensive to shift data values onto byte or word
boundaries in main memory for processing. However,
CPUs are getting faster at a much greater rate than disk
bandwidth is increasing. Hence, it makes sense to trade
CPU cycles, which are abundant, for disk bandwidth,
which is not. This tradeoff appears especially profitable in

In contrast, systems oriented toward ad-hoc querying
of large amounts of data should be read-optimized. Data
warehouses represent one class of read-optimized system,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or 1o republish, requires a fee andlor special permission from the
Endowment

Proceedings of the 31 VLDB Conference,

Trondheim, Norway, 2005

VLDB 2005

aread. tly envis s

There are two ways a column store can use CPU cycles
to save disk bandwidth. First, it can code data elements
into a more compact form. For example, if one is storing
an attribute that is a customer’s state of residence, then US
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable
length character string for the name of the state requires
many more. Second, one should densepack values in
storage. For example, in a column store it is
straightforward to pack N values, each K bits long, into N
* K bits. The coding and compressibility advantages of a

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

Relational Database

A 2 . o) \
oo Sgrove Zgoue® o el
Record 1 | %
Record 2
Record 3

A relation (table) has rows and columns

Row Store vs. Column Store

| Row Store

| | % [
M 100 ¥ [fal Y |.. ¥
Fﬂ 95 fall
F 98 spring
M 79 spring

Row store: fields in a row are contiguously stored on disk
— Write optimized

Row Store vs. Column Store

Row Store Column Store
M 100 fall M 100 fall
F 95 fall] 95 il
F 98 spring
F 98 spring ;
M 79 spring

M 79 spring 7)\

Row store: fields in a row are contiguously stored on disk
— Write optimized

Column store: fields in a column are contiguously stored on disk
— Read optimized

Row Store vs. Column Store

[, Row Storg Column Store
M 100 fall M 100 fall
F 95 fall F 2e il
F 98 spring
F 98 spring " e soring

M 79 spring ‘L

Advantages of column store
— Only needed attributes are loaded into memory

Row Store vs. Column Store

Row Store Column Store

M 100 fall M 100 fall
r 95 fall F 95 fall

F 98 spring
F 98 spring .

M 79 spring
M 79 spring

T [oo(90 |

Advantages of column store
— Only needed attributes are loaded into memory
— Store data in more compact layout (avoid word and page alignment)

- Ubyle. el
iyte Lz~

Row Store vs. Column Store

Row Store J Column Store
M 100 fall M 100 fall
F 95 fall] 95 il
F 98 spring
F 98 spring ;
M 79 spring

w5 Jews . P

Advantages of column store
— Only needed attributes are loaded into memory
— Store data in more compact layout (avoid word and page alignment)
— Easier to compress data

Row Store vs. Column Store

Yy Row Store update Column Store
one row
M 100 fall < M 100 fall
F 95 fall i = 1
F 98 spring
F 98 spring .
M 79 spring
M 79 spring f I I \

update all columns
Advantages of column store P

— Only needed attributes are loaded into memory @"
— Store data in more compact layout (avoid word and page alignment)
— Easier to compress data

T

Disadvantages of column store
— Updates are less efficient

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

12

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

RAM RAM RAM RAM RAM RAM

SRS

— e r O =" =

13

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

« Each piece of data is stored in multiple replicas for high availability
— If one replica fails, can read from other replicas

RAM RAM RAM RAM RAM RAM

SRR

— e r O =" =

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

« Each piece of data is stored in multiple replicas for high availability
— If one replica fails, can read from other replicas

» Separate reads and writes to different stores

B| — [B” B

iy L Writeable Store (WS)
A

RAM RAM RAM RAM RAM RAM lTuple Mover
— = = == Read-optimized Store (RS)

15

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

16

C-Store Data Model

Projection: A group of columns sorted on the same attributes

Example:

EMP1 (name, age| age)

EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)

DEPT1 (dname, floor| floor)

17

C-Store Data Model

Projection: A group of columns sorted on the same attributes

Example:
Sort ke
_ y
EMP1(name, age| age) \

EMP2 (dept, age, DEPT.floor| DEPT. floor)
EMP3 (name, salary| salary)
DEPT1 (dname, floor| floor)

18

C-Store Data Model @_’@"@

Projection: A group of columns sorted on th!same ibutes
| P14 3 Telos ~ BAMP2 —> Jiolex
Example: . -
2 — emMf3
S
-—9/\EMP1(name, age || age) f/‘ |
EMP2 (dept, age, DEPT.floor| DEPT.floor) 7€)
~- EMP3 (@fé, salary|(salary
DEPT1 (dname, floor| floor))D

Same attribute can belong to multiple proj&and be sorted in
different orders

19

C-Store Data Model

Segment: Each projection is horizontally partitioned into segments
— Called row groups in parquet format

EMP1(name, age| age)

name age ///’//'// |

Segment 1

Segment 2

C-Store Data Model

Storage Key: Each segment associates every data value of every
column with a storage key, SK

— For records in RS, SK is the physical position in the column.

name age SK

¢

Segment 1

Segment 2

oONOUVNA, WNERE oowmm.thB

C-Store Data Model

Join Indices store the mapping between projections that are
anchored at the same table (one-to-one mapping)

<« ~—

EMP1 (name, age| age) EMP3 (name, salary| salary)
name age SK name salary SK
2 2
3 3
. : Segment 1
6 6
7 7
8 8
1 1
2 2
3 3
:) ‘g‘ Segment 2
6
7 7
8 8

22

C-Store Data Model

Join Indices store the mapping between projections that are
anchored at the same table (one-to-one mapping)

— (segment_ID, SK) to locate the matching record

EMP1 (name, age| age) EMP3 (name, salary| salary)
name age SK Join index name salary SK
2 7 aacy %
3 (segl, SK=2) 3
: : Segment 1
6 6
7 7
8 8
1 1
2 2
3 3
. : Segment?2
6 6
7 7
8 8

23

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

24

Data Encoding

Type 1: Self-order, few distinct values -

O™~ — O (lu¢ _

— (value, first-appear-position, n.gmber-cﬁ-appearance)
— Similar to run length encoding (RLE)

3?

CD) O, 19} U/l\/{'l
ya

25

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)

— Similar to run length encoding (RLE)

Type 2; Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

'

9

©oc QOO0 —

26

SO (A0 O

o

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Discussion Question:

Is there an encoding scheme that can achieve
higher compression ratio than bitmap encoding?
(Hint: consider 4 unique values)

27

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)

— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Type 3: Self-order, many distinct values gP Swn- F W,

— Delta encoding

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Type 3: Self-order, many distinct values
— Delta encoding

Type 4: Foreign-order, many distinct value
— No encoding

%

29

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

30

Query Execution

« Decompress
e Select }

* Mask

* Project

« Sort

« Aggregation

« Concat

* Permute

* Join

« Bitstring operators

31

Query Execution

 Decompress

« Select

* Mask

* Project

« Sort

» Aggregation

» Concat

* Permute

« Join

» Bitstring operators

Impact on query optimizers
— Choose the best projections to run queries
— Cost model includes the compression type

32

Query Execution Example

Join in row store

-

(select select \>

33

Query Execution Example

Join in row store Join in column store

Use (SID, SK) pairs to join with other columns

. Ty

e siite

select select m

0
elect 1

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

35

Transaction Updates

Write Store (WS)

—1:1 mapping between RS and WS
— Storage keys are explicitly stored
— No compression

— Snaeshot isolation

Writeable Store (WS)

Tuple Mover

Read-optimized Store (RS)

Transaction Updates

Write Store (WS)

—1:1 mapping between RS and WS
— Storage keys are explicitly stored
— No compression

— Snapshot isolation

Writeable Store (WS)

Tuple Mover

Read-optimized Store (RS)

Tuple mover
— Periodically merge WS and RS into a new RS’

37

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

38

Evaluation

No materialized view in baselines

C-Store Row Store Column Store
1.987 GB 2.650 GB
Query C-Store Row Store Column
Store
Q1 0.03 6.80 2.24
Q2 0.36 1.09 0.83
Q3 4.90 93.26 29.54
Q4 2.09 722 .90 2223
Q5 0.31 116.56 0.93
Q6 8.50 652.90 32.83
Q7 2.54 265 .80 33.24

39

Evaluation

No materialized view in baselines j

C-étore Row Store Column Store
1.987 GB 4480 2.650 GB

With materialized view in baselines

J

Query C-Store Row Store Column
Store
Ql 0.03 6.80 2.24
Q2 0.36 1.09 0.83
Q3 4.90 93.26 29.54
Q4 2.09 722.90 2223
Q5 0.31 116.56 0.93
Q6 8.50 652.90 32.83
Q7 2.54 265.80 33.24

C-Store Row Store Column Store
1.987 GB 11.900 GB 4.090,GB
987 G 900 G [49 'G
Query C-Store Row Store Column
Store
Q1 0.03 0.22 2.34
Q2 0.36 0.81 0.83
Q3 4.90 49 .38 29.10
Q4 2.09 21.76 22.23
Q5 0.31 0.70 0.63
Q6 8.50 4738 25.46
Q7 2.54 18.47 6.28
P

40

Q/A — C-Store

How can the idea adapt for distributed databases?
Does industry welcome column store?

| Any way to optimize for write performance?
Impact of not doing prepare phase in 2PC?
Why storage keys calculated on the fly instead of being stored?

Multiple projections amplify space usage.

41

Before Next Lecture

Submit review for

David DeWitt, Jim Gray, Parallel Database Systems: The
Future of High Performance Database Processing. Communications
of the ACM, 1992

42

