WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 8: Parallel Database

Xiangyao Yu
10/3/2022

Today’s Paper: Parallel DBMSs

Parallel Database Systems:
The Future of High Performance Database Processing!

David J. DeWitt2 Jim Gray
Computer Sciences Department San Francisco Systems Center
University of Wisconsin Digital Equipment Corporation
1210 W. Dayton St. 455 Market St. 7'th floor
Madison, WI. 53706 San Francisco, CA. 94105-2403
dewitt @ cs.wisc.edu Gray @ SFbay .enet.dec.com
January 1992

Abstract: Parallel database machine architectures have evolved from the use of exotic
hardware to a software parallel dataflow architecture based on conventional shared-nothing
hardware. These new designs provide impressive speedup and scaleup when processing
relational database queries. This paper reviews the techniques used by such systems, and surveys
current commercial and research systems.

1. Introduction

Highly parallel database systems are beginning to displace traditional mainframe
computers for the largest database and transaction processing tasks. The success of these
systems refutes a 1983 paper predicting the demise of database machines [BORAS83]. Ten years
ago the future of highly-parallel database machines seemed gloomy, even to their staunchest
advocates. Most database machine research had focused on specialized, often trendy, hardware
such as CCD memories, bubble memories, head-per-track disks, and optical disks. None of these
technologies fulfilled their promises; so there was a sense that conventional cpus, electronic
RAM, and moving-head magnetic disks would dominate the scene for many years to come. At
that time, disk throughput was predicted to double while processor speeds were predicted to
increase by much larger factors. Consequently, critics predicted that multi-processor systems
would soon be I/O limited unless a solution to the I/O bottleneck were found.

While these predictions were fairly accurate about the future of hardware, the critics were
certainly wrong about the overall future of parallel database systems. Over the last decade
Teradata, Tandem, and a host of startup companies have successfully developed and marketed
highly parallel database machines.

Communications of the ACM, 1992

Agenda

Para

Para

Para

e

e

e

ISm metrics
architecture

OLAP operators

Cloud parallel database

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators
Cloud parallel database

Parallel Database History

1980’s: database machines
« Specialized hardware to make databases run fast

« Special hardware cannot catch up with Moore’s Law

1980’s — 2010’s: shared-nothing architecture
« Connecting machines using a network

2010’s — future?

Scaling in Parallel Systems

Linear speedup

« Twice as much hardware can perform the task in half the elapsed time
small system elapsed time

e Speedup =

big system elapsed time
 Linear speedup = N, where the big system is N times larger than the small system

Scaling in Parallel Systems

Linear speedup

« Twice as much hardware can perform the task in half the elapsed time
small system elapsed time

e Speedup =

big system elapsed time
 Linear speedup = N, where the big system is N times larger than the small system

Linear scaleup

« Twice as much hardware can perform twice as large a task in the same elapsed
time

small system elapsed time on small problem

e Scaleup =
p big system elapsed time on big problem

 Linear scaleup = 1

Scaling in Parallel Systems

The Good Speedup

NewTime

_ OldTime

Speedup

Processors & Discs

Ideal speedup

Scaling in Parallel Systems

NewTime

_OldTime

Speedup

A Bad Speedup Curve

The Good Speedup No Parallelism

OldTime
NewTime

Linearity

Speedup

Processors & Discs Processors & Discs

Ideal speedup No speedup

Scaling in Parallel Systems

A Bad Speedup Curve A Bad Speedup Curve
o & The Gaod Speedup ol & No Parallelism 3-Factors
Ei= SIS
53 S/3
o2 s
o g o
3 5 Linearity
3 &
3 7]
U) .
Processors & Discs Processors & Discs Processors & Discs
Ideal speedup No speedup In practice

10

Threats to Parallelism

} Start parallel tasks
non-ideal e
processors & disks —
Startup Collect results

Starting remote tasks incurs
performance overhead

Threats to Parallelism

non-ideal

processors & disks

Startup Interference

-

Examples of interference

 Shared hardware resources
(e.g., memory, disk, network)

« Synchronization (e.g., locking)

12

Threats to Parallelism

non-ideal

-

Startup Interference Skew

processors & disks

Tasks:

Some nodes take more time to
execute the assigned tasks, e.g.,

More tasks assigned

More computational
Intensive tasks assigned
Node has slower hardware

13

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators
Cloud parallel database

14

Design Spectrum

Shared Memory

RAM

RAM RAM

Network

= S

— ==

Shared Disk

Shared Nothing

15

Design Spectrum — Shared Memory (SM)

All processors share direct access to a
common global memory and to all disks

* Does not scale beyond a single server

Example: multicore processors

Shared Memory

CPUO CPU 1
Memory module Memory module
Core 0 Core 1 Core 2 Core 3 I I Core 0 Core 1 Core 2 Core 3
Shared cache | | Shared cache
Core 0 Core 1 Core 2 Core3| ICoreO Core 1 Core 2 Core 3
Shared cache | [Shared cache
Memory module Memory module
CPU 2 CPU3

16

Design Spectrum — Shared Disk (SD)
Each processor has a private memory but has

direct access to all disks
* Does not scale beyond tens of servers

RAM RAM RAM

Example: Network attached storage (NAS) and = &
storage area network (SAN) .
Shared Disk

17

Design Spectrum — Shared Nothing (SN)
Each memory and disk is owned by some

processor that acts as a server for that data
RAM RAM RAM

« Scales to thousands of servers and beyond gcg gcg ;E
—) —) N—)

I = =/

Important optimization goal: minimize network | | |
data transfer Network

Shared Nothing

18

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators

Cloud parallel database

19

How to Build Parallel Database?

Old uni-processor software must be rewritten to benefit from parallelism

Most database programs are written in relational language SQL
- Can make SQL work on parallel hardware without rewriting
 Benefits of a high-level programming interface

20

How to Build Parallel Database?

Old uni-processor software must be rewritten to benefit from parallelism

Most database programs are written in relational language SQL
- Can make SQL work on parallel hardware without rewriting
 Benefits of a high-level programming interface

Source Source Source Source
Data Data Data Data

Pipelined Parallelism Partitioned Parallelism .

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Processor 1

Processor 2

22

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Advantages
 Avoid writing intermediate results back to disk

Processor 1

Processor 2

23

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Advantages
 Avoid writing intermediate results back to disk

Disadvantages
« Small number of stages in a query
 Blocking operators: e.g., sort and aggregation

» Different speed: scan faster than join. Slowest
operator becomes the bottleneck

Processor 1

Processor 2

24

Partitioned Parallelism

Round robin

Map tuple i/ to disk (i mode n)
- Advantage: Simplicity, good load balancing
- Disadvantage: Hard to identify the partition of a particular record

25

Partitioned Parallelism

Round robin Range Partitioning

Map contiguous attribute ranges to partitions
- Advantage: Good locality due to clustering
- Disadvantage: May suffer from skewness

26

Partitioned Parallelism

Round robin Range Partitioning Hash Partitioning

Map based on the hash value of tuple attributes
- Advantage: Good load balance, low skewness
- Disadvantage: Bad locality

27

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified
« Each operator has a set of input and output ports

 Partition and merge these ports to sequential ports so that an operator is
not aware of parallelism

Split|
operator

Process
Executing
Operator

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified
« Each operator has a set of input and output ports

 Partition and merge these ports to sequential ports so that an operator is
not aware of parallelism

C

. C < merge
— operator
Process Split — 1 @ N
Executing operator h
Operator @
——-—" A
> 1A Al

29

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified

« Each operator has a set of input and output ports
 Partition and merge these ports to sequential ports so that an operator is

not aware of parallelism
C
1

insert into C @
select *
from A, B
where A.x = B.y; @

split each join output into 3 streams
erge the 3 join input streams
at each insert node

split each B scan output into 3 streams
merge the 3 input streams
at each join node

30

Data Shuffle

Single-node query plan

"

Distributed query plan

X
Exchange Exchange
| |

R S

31

Data Shuffle — Example

Site 1

s |

Site 2

Query plan

X
Exchange Exchange
| |

R S

32

Data Shuffle — Single-Site

Site 1

Solution 1: send all the involved

Query plan tables to a single site
X - Advantage: Single-site query
/ \ execution is a solved problem

- Disadvantage: (1) Single site
Exc';ange Exclhange execution can be slow (2) Data
may not fit in single site’s
R S memory or disk

33

Data Shuffle — Broadcast

Site 1

| s | Query plan

Site 2 /// \\\

Exchange

|
‘SE‘ S

Solution 2: Keep one relation
partitioned and broadcast the
other relation to all sites

- Advantage: One relation does
not need to move

- Disadvantage: Still need to
broadcast the other relation to all
sites

34

Data Shuffle — Co-partition

Site 1

Solution 3: Partition both

Query plan relations using the join key
D4 - Advantage: Each site has less
/ \ data to process
- Disadvantage: Both relations are

Exchange Exchange
| |

R S

shuffled (if not already partitioned
based on join key)

35

Specialized Parallel Operators

Semi-join
« Example:

SELECT *

FROM T1, T2
WHERE T1.A

T2.C

Site 1 Site 2
R|A|B

114 | h(ra(R))

2 |5 |—— [0111000] _| S|c|D C|h(C)

36| povy < d7 — 116 1 1]V
4|8 4| 4 | -
5|9 5| 5 :
8|1 gl 1 |V

=0

o =0
-~ ol
\\

O=F?D<A=CS'

9]
-
&~
N =0
»)

* Source: Sattler KU. (2009) Semijoin. Encyclopedia of Database Systems.

36

Agenda

Para

Para

Para

e

e

e

ISm metrics
architecture

OLAP operators

Cloud parallel database

37

Paradigm Shift in Architecture — Disaggregation

RAM RAM RAM RAM RAM RAM RAM RAM RAM

s S o S ST

— = ==

Storage-as- S
@,, @ a-Service Network N —/

Storage Disaggregation Shared Nothing Shared Disk

38

Paradigm Shift in Architecture — Disaggregation

RAM RAM RAM RAM RAM RAM RAM RAM RAM

o v @ & o ST

— = ==

Storage-as- S
@,, @ a-Service Network N —/

Storage Disaggregation Shared Nothing Shared Disk

Feature 1: All compute nodes can access the entire storage service
Feature 2: Can perform limited computation in the storage service
Feature 3: The storage service is highly available

39

Paradigm Shift in Architecture — Disaggregation

RAM RAM RAM RAM RAM RAM RAM RAM RAM

o v @ & o ST

— = ==

Storage-as- S
@,, @ a-Service Network N —/

Storage Disaggregation Shared Nothing Shared Disk

Key challenge: Network becomes a bottleneck
— Performance of disaggregation can be 10x lower than shared-nothing [1]

More on this topic in a few lectures

40
[1] Junjay Tan, et al. Choosing A Cloud DBMS: Architectures and Tradeoffs, VLDB’19

Q/A — Parallel Database

How is data skew handled by hash partitioning?
Is partitioning part of the SQL interface or is it hidden from users?

The paper mentioned that SM and SD systems failed to scale well
because of limited network bandwidth; Is this still true today?

No guantitative comparison of scalability

How to cope with locking in a shared-nothing database?

41

Before Next Lecture

Submit review for

Jim Gray, et al., Granularity of Locks and Degrees of
Consistency in a Shared Data Base. Modelling in Data Base

Management Systems, 1976

42

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/Granularity-of-Locks.pdf

