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Announcements

Submit project proposal by Oct. 17
– Create a new submission on Hotcrp (https://wisc-cs764-f25.hotcrp.com)

Cover the following aspects (in 1–4 pages) 
– Project name 
– Author list 
– Background and motivation (why important? challenges?) 

– Task plan (what will you do? key contributions?) 
– Timeline 

Recommend ACM format 
– https://www.acm.org/publications/proceedings-template
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Storage-Disaggregation Architecture

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Features of disaggregation architecture
• Computation and storage layers are 

disaggregated

• Limited computation can happen in the 

storage layer
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Storage-Disaggregation Architecture
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Advantages 
• Lower management cost 

• Independent scaling of computation 

and storage

Disadvantages 
• Network becomes a bottleneck

Features of disaggregation architecture
• Computation and storage layers are 

disaggregated

• Limited computation can happen in the 

storage layer
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How to Mitigate the Network Bottleneck? 
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Solution 1: Move data to computation 
• Cache storage data in the computation layer

• Example: Snowflake

Solution 2: Move computation to data 
• Pushdown computation to the storage layer

• Example: PushdownDB 
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Today’s Papers — Pushdown DBMS

VLDB 2021ICDE 2020
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PushdownDB – Architecture

PushdownDB implementation

– Single-node, multi-process Python-based database

– Ubuntu 16.04.5 LTS, Python version 2.7.12. 
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EC2 (r4.8xlarge)

10 Gbit Ethernet

S3 Select

Simple Storage Service (S3)
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S3 Select

Supports limited SQL queries on CSV and Parquet data format
– S3 Select recognizes database schema for both data formats 

– Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)
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S3 Select supports
– Filter

– Project

– Aggregate without group-by

PushdownDB – Supported Operators

PushdownDB supports

– Filter

– Project

– Top-K

– Join

– Group-by
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Filter

Server-side filtering
– Compute server loads entire table from S3 and filters locally

Example query:

 SELECT col1, col2

 FROM R

 WHERE col1 < 10
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Filter

Server-side filtering
– Compute server loads entire table from S3 and filters locally

S3-side filtering
– Push down predicate evaluation using S3 Select
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Example query:

 SELECT col1, col2

 FROM R

 WHERE col1 < 10
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Baseline Join
– Server loads both tables from S3 and joins locally

Join

SELECT SUM(O_TOTALPRICE) 

FROM CUSTOMER, ORDER 

WHERE

   O_CUSTKEY = C_CUSTKEY 

   AND C_ACCTBAL <= upper_c_acctbal 

   AND O_ORDERDATE < upper_o_orderdate 12



Baseline Join
– Server loads both tables from S3 and joins locally

Filtered Join
– Server pushes filtering predicates to S3 to load both tables

 

 

 

Join

SELECT SUM(O_TOTALPRICE) 

FROM CUSTOMER, ORDER 

WHERE

   O_CUSTKEY = C_CUSTKEY 

   AND C_ACCTBAL <= upper_c_acctbal 

   AND O_ORDERDATE < upper_o_orderdate 13



Bloom Join
– Step 1: Server loads the smaller table, builds a bloom filter using join key

– Step 2: Server sends the filter via S3 Select to load the bigger table

– Bloom filter is pushed down as a predicate

 

 

Join

SELECT ... 

FROM S3Object 

WHERE SUBSTRING(’1000011...111101101’, 

 ((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1 ) = ’1’ 

SELECT SUM(O_TOTALPRICE) 

FROM CUSTOMER, ORDER 

WHERE

   O_CUSTKEY = C_CUSTKEY 

   AND C_ACCTBAL <= upper_c_acctbal 

   AND O_ORDERDATE < upper_o_orderdate 14



Evaluation – Join

SELECT SUM(O_TOTALPRICE) 

FROM CUSTOMER, ORDER 

WHERE

 O_CUSTKEY = C_CUSTKEY 

 AND C_ACCTBAL <= upper_c_acctbal 

 AND O_ORDERDATE < upper_o_orderdate 

Runtime Cost Breakdown

15



Evaluation – All Operators and TPC-H

Overall, PushdownDB reduces runtime by 6.7× and reduces cost by 30%
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
– Examples: default presto, hive, SparkSQL, etc. 

…
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node
– Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

Local
Cache

…

Caching 
table data

…
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Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
– Examples: Redshift spectrum, Aqua, PushdownDB, etc.

Local
Cache

……

…

Caching 
table data

Pushdown results

…
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Caching vs. Pushdown

Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size
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Caching vs. Pushdown

Caching performance 
increases with a bigger cache

Pushdown performance is 
independent of cache size

A hybrid design may achieve 
the best of both worlds
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Mitigate Network Bottleneck

Baseline (Pullup): always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage

Hybrid: hybrid caching and pushdown at fine granularity

Local
Cache

……

…

…

Local
Cache Merge

Caching 
table data

Pushdown results

…

…
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FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB 24
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FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

– Segment as the caching granularity

Source code: https://github.com/cloud-olap/FlexPushdownDB 25
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FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

– Segment as the caching granularity

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB 26

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB


FlexPushdownDB (FPDB) Overview

Main modules
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FlexPushdownDB (FPDB)

Separable operators
– Can execute separately using 

cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)
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FlexPushdownDB (FPDB)

Separable operators
– Can execute separately using 

cached segments and cloud 
storage 

– Example: projection, selection, 
aggregation, hash join (partially)

Query execution
– Heuristic: exploit caching when 

possible, otherwise pushdown as 
much as possible
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Separable Query Plan — Example

30



Cache Manager

Traditional caching assumption: Equal-size cache misses incur 
the same cost
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Cache Manager

Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority
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Cache Manager

Traditional caching assumption: Equal-size cache misses incur 
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost, 
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
– Increment the frequency counter with the estimate miss cost
– Estimated miss cost = network cost + scan cost + compute cost
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Performance Evaluation

Conclusion: FPDB outperforms baselines by 2.2x
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Evaluation – Weighted-LFU

Weighted-LFU outperforms the baseline LFU by 37%
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Evaluation – Resource Usage
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Evaluation – Resource Usage
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Adaptive Pushdown
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Adaptive Pushdown: If pushdown computation is saturated, fallback 
to pullup through pushback 

Pushback when 
estimated pushdown 
time > estimated 
pushback time 



Adaptive Pushdown - Evaluation
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Advanced Pushdown Operators

41

Key Characteristics of Pushdown. The required storage-
layer computation is local and bounded 

–Local: Pushdown computation does not incur network traffic 
among storage servers 

–Bounded: pushdown tasks require at most linear amount of CPU 
and memory resources over the accessed data size



Selection Bitmap Pushdown
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SELECT A, B FROM R 

WHERE [predicates on B] 



Selection Bitmap Pushdown - Evaluation
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Distributed Shuffle Pushdown
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Distributed Shuffle Pushdown - Evaluation
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Pushdown DBMS – Q/A 

• GPU acceleration in compute and pushdown layers?

• Separable operator for multi-way joins? 

• Updates and mutable data? 

•  What about caching intermediate results? 

• Compute frequency counter of a missing segment?
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Next Lecture

Elena Milkai, Xiangyao Yu, Jignesh Patel, Hermes: Off-the-Shelf 

Real-Time Transactional Analytics. VLDB, 2025

47

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf

	Slide 1
	Slide 2: Announcements
	Slide 3: Storage-Disaggregation Architecture
	Slide 4: Storage-Disaggregation Architecture
	Slide 5: How to Mitigate the Network Bottleneck? 
	Slide 6: Today’s Papers — Pushdown DBMS
	Slide 7: PushdownDB – Architecture
	Slide 8: S3 Select
	Slide 9: PushdownDB – Supported Operators
	Slide 10: Filter
	Slide 11: Filter
	Slide 12: Join
	Slide 13: Join
	Slide 14: Join
	Slide 15: Evaluation – Join
	Slide 16: Evaluation – All Operators and TPC-H
	Slide 17: Today’s Papers — Pushdown DBMS
	Slide 18: Mitigate Network Bottleneck
	Slide 19: Mitigate Network Bottleneck
	Slide 20: Mitigate Network Bottleneck
	Slide 21: Caching vs. Pushdown
	Slide 22: Caching vs. Pushdown
	Slide 23: Mitigate Network Bottleneck
	Slide 24: FlexPushdownDB (FPDB) Overview
	Slide 25: FlexPushdownDB (FPDB) Overview
	Slide 26: FlexPushdownDB (FPDB) Overview
	Slide 27: FlexPushdownDB (FPDB) Overview
	Slide 28: FlexPushdownDB (FPDB)
	Slide 29: FlexPushdownDB (FPDB)
	Slide 30: Separable Query Plan — Example
	Slide 31: Cache Manager
	Slide 32: Cache Manager
	Slide 33: Cache Manager
	Slide 34: Performance Evaluation
	Slide 35: Evaluation – Weighted-LFU
	Slide 36: Evaluation – Resource Usage
	Slide 37: Evaluation – Resource Usage
	Slide 38: Today’s Papers — Pushdown DBMS
	Slide 39: Adaptive Pushdown
	Slide 40: Adaptive Pushdown - Evaluation
	Slide 41: Advanced Pushdown Operators
	Slide 42: Selection Bitmap Pushdown
	Slide 43: Selection Bitmap Pushdown - Evaluation
	Slide 44: Distributed Shuffle Pushdown
	Slide 45: Distributed Shuffle Pushdown - Evaluation
	Slide 46: Pushdown DBMS – Q/A 
	Slide 47: Next Lecture

