
Xiangyao Yu

10/9/2025

CS 764: Topics in Database Management Systems

Lecture 11: Pushdown DBMS

1

Announcements

Submit project proposal by Oct. 17
– Create a new submission on Hotcrp (https://wisc-cs764-f25.hotcrp.com)

Cover the following aspects (in 1–4 pages)
– Project name
– Author list
– Background and motivation (why important? challenges?)

– Task plan (what will you do? key contributions?)
– Timeline

Recommend ACM format
– https://www.acm.org/publications/proceedings-template

2

https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template

Storage-Disaggregation Architecture

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Features of disaggregation architecture
• Computation and storage layers are

disaggregated

• Limited computation can happen in the

storage layer

3

Storage-Disaggregation Architecture

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Advantages
• Lower management cost

• Independent scaling of computation

and storage

Disadvantages
• Network becomes a bottleneck

Features of disaggregation architecture
• Computation and storage layers are

disaggregated

• Limited computation can happen in the

storage layer

4

How to Mitigate the Network Bottleneck?

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Solution 1: Move data to computation
• Cache storage data in the computation layer

• Example: Snowflake

Solution 2: Move computation to data
• Pushdown computation to the storage layer

• Example: PushdownDB
5

Today’s Papers — Pushdown DBMS

VLDB 2021ICDE 2020

6

VLDBJ 2024

PushdownDB – Architecture

PushdownDB implementation

– Single-node, multi-process Python-based database

– Ubuntu 16.04.5 LTS, Python version 2.7.12.

CPU

Mem

Network

CPU CPU CPU CPU

EC2 (r4.8xlarge)

10 Gbit Ethernet

S3 Select

Simple Storage Service (S3)

7

S3 Select

Supports limited SQL queries on CSV and Parquet data format
– S3 Select recognizes database schema for both data formats

– Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

CPU

Mem

Network

CPU CPU CPU CPU

8

S3 Select supports
– Filter

– Project

– Aggregate without group-by

PushdownDB – Supported Operators

PushdownDB supports

– Filter

– Project

– Top-K

– Join

– Group-by

9

Filter

Server-side filtering
– Compute server loads entire table from S3 and filters locally

Example query:

 SELECT col1, col2

 FROM R

 WHERE col1 < 10

CPU

Mem

Network

CPU CPU CPU CPU

10

Filter

Server-side filtering
– Compute server loads entire table from S3 and filters locally

S3-side filtering
– Push down predicate evaluation using S3 Select

CPU

Mem

Network

CPU CPU CPU CPU

Example query:

 SELECT col1, col2

 FROM R

 WHERE col1 < 10

11

Baseline Join
– Server loads both tables from S3 and joins locally

Join

SELECT SUM(O_TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE

 O_CUSTKEY = C_CUSTKEY

 AND C_ACCTBAL <= upper_c_acctbal

 AND O_ORDERDATE < upper_o_orderdate 12

Baseline Join
– Server loads both tables from S3 and joins locally

Filtered Join
– Server pushes filtering predicates to S3 to load both tables

Join

SELECT SUM(O_TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE

 O_CUSTKEY = C_CUSTKEY

 AND C_ACCTBAL <= upper_c_acctbal

 AND O_ORDERDATE < upper_o_orderdate 13

Bloom Join
– Step 1: Server loads the smaller table, builds a bloom filter using join key

– Step 2: Server sends the filter via S3 Select to load the bigger table

– Bloom filter is pushed down as a predicate

Join

SELECT ...

FROM S3Object

WHERE SUBSTRING(’1000011...111101101’,

 ((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1) = ’1’

SELECT SUM(O_TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE

 O_CUSTKEY = C_CUSTKEY

 AND C_ACCTBAL <= upper_c_acctbal

 AND O_ORDERDATE < upper_o_orderdate 14

Evaluation – Join

SELECT SUM(O_TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE

 O_CUSTKEY = C_CUSTKEY

 AND C_ACCTBAL <= upper_c_acctbal

 AND O_ORDERDATE < upper_o_orderdate

Runtime Cost Breakdown

15

Evaluation – All Operators and TPC-H

Overall, PushdownDB reduces runtime by 6.7× and reduces cost by 30%

16

Today’s Papers — Pushdown DBMS

VLDB 2021ICDE 2020

17

VLDBJ 2024

Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
– Examples: default presto, hive, SparkSQL, etc.

…

18

Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node
– Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

Local
Cache

…

Caching
table data

…

19

Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
– Examples: Redshift spectrum, Aqua, PushdownDB, etc.

Local
Cache

……

…

Caching
table data

Pushdown results

…

20

Caching vs. Pushdown

Caching performance
increases with a bigger cache

Pushdown performance is
independent of cache size

21

Caching vs. Pushdown

Caching performance
increases with a bigger cache

Pushdown performance is
independent of cache size

A hybrid design may achieve
the best of both worlds

22

Mitigate Network Bottleneck

Baseline (Pullup): always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage

Hybrid: hybrid caching and pushdown at fine granularity

Local
Cache

……

…

…

Local
Cache Merge

Caching
table data

Pushdown results

…

…

23

FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB 24

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

– Segment as the caching granularity

Source code: https://github.com/cloud-olap/FlexPushdownDB 25

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
– Cache table data rather than query results for simplicity

– Segment as the caching granularity

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB 26

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Main modules

27

FlexPushdownDB (FPDB)

Separable operators
– Can execute separately using

cached segments and cloud
storage

– Example: projection, selection,
aggregation, hash join (partially)

28

FlexPushdownDB (FPDB)

Separable operators
– Can execute separately using

cached segments and cloud
storage

– Example: projection, selection,
aggregation, hash join (partially)

Query execution
– Heuristic: exploit caching when

possible, otherwise pushdown as
much as possible

29

Separable Query Plan — Example

30

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

31

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

32

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
– Increment the frequency counter with the estimate miss cost
– Estimated miss cost = network cost + scan cost + compute cost

33

Performance Evaluation

Conclusion: FPDB outperforms baselines by 2.2x

34

Evaluation – Weighted-LFU

Weighted-LFU outperforms the baseline LFU by 37%

35

Evaluation – Resource Usage

36

Evaluation – Resource Usage

37

Today’s Papers — Pushdown DBMS

VLDB 2021ICDE 2020

38

VLDBJ 2024

Adaptive Pushdown

39

Adaptive Pushdown: If pushdown computation is saturated, fallback
to pullup through pushback

Pushback when
estimated pushdown
time > estimated
pushback time

Adaptive Pushdown - Evaluation

40

Advanced Pushdown Operators

41

Key Characteristics of Pushdown. The required storage-
layer computation is local and bounded

–Local: Pushdown computation does not incur network traffic
among storage servers

–Bounded: pushdown tasks require at most linear amount of CPU
and memory resources over the accessed data size

Selection Bitmap Pushdown

42

SELECT A, B FROM R

WHERE [predicates on B]

Selection Bitmap Pushdown - Evaluation

43

Distributed Shuffle Pushdown

44

Distributed Shuffle Pushdown - Evaluation

45

Pushdown DBMS – Q/A

• GPU acceleration in compute and pushdown layers?

• Separable operator for multi-way joins?

• Updates and mutable data?

• What about caching intermediate results?

• Compute frequency counter of a missing segment?

46

Next Lecture

Elena Milkai, Xiangyao Yu, Jignesh Patel, Hermes: Off-the-Shelf

Real-Time Transactional Analytics. VLDB, 2025

47

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf

	Slide 1
	Slide 2: Announcements
	Slide 3: Storage-Disaggregation Architecture
	Slide 4: Storage-Disaggregation Architecture
	Slide 5: How to Mitigate the Network Bottleneck?
	Slide 6: Today’s Papers — Pushdown DBMS
	Slide 7: PushdownDB – Architecture
	Slide 8: S3 Select
	Slide 9: PushdownDB – Supported Operators
	Slide 10: Filter
	Slide 11: Filter
	Slide 12: Join
	Slide 13: Join
	Slide 14: Join
	Slide 15: Evaluation – Join
	Slide 16: Evaluation – All Operators and TPC-H
	Slide 17: Today’s Papers — Pushdown DBMS
	Slide 18: Mitigate Network Bottleneck
	Slide 19: Mitigate Network Bottleneck
	Slide 20: Mitigate Network Bottleneck
	Slide 21: Caching vs. Pushdown
	Slide 22: Caching vs. Pushdown
	Slide 23: Mitigate Network Bottleneck
	Slide 24: FlexPushdownDB (FPDB) Overview
	Slide 25: FlexPushdownDB (FPDB) Overview
	Slide 26: FlexPushdownDB (FPDB) Overview
	Slide 27: FlexPushdownDB (FPDB) Overview
	Slide 28: FlexPushdownDB (FPDB)
	Slide 29: FlexPushdownDB (FPDB)
	Slide 30: Separable Query Plan — Example
	Slide 31: Cache Manager
	Slide 32: Cache Manager
	Slide 33: Cache Manager
	Slide 34: Performance Evaluation
	Slide 35: Evaluation – Weighted-LFU
	Slide 36: Evaluation – Resource Usage
	Slide 37: Evaluation – Resource Usage
	Slide 38: Today’s Papers — Pushdown DBMS
	Slide 39: Adaptive Pushdown
	Slide 40: Adaptive Pushdown - Evaluation
	Slide 41: Advanced Pushdown Operators
	Slide 42: Selection Bitmap Pushdown
	Slide 43: Selection Bitmap Pushdown - Evaluation
	Slide 44: Distributed Shuffle Pushdown
	Slide 45: Distributed Shuffle Pushdown - Evaluation
	Slide 46: Pushdown DBMS – Q/A
	Slide 47: Next Lecture

