WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 11: Pushdown DBMS

Xiangyao Yu
10/9/2025

Announcements

Submit project proposal by Oct. 17
— Create a new submission on Hotcrp (https://wisc-cs764-f25.hotcrp.com)

Cover the following aspects (in 1-4 pages)
— Project name
— Author list
— Background and motivation (why important? challenges?)
— Task plan (what will you do? key contributions?)
— Timeline

Recommend ACM format
— https://www.acm.org/publications/proceedings-template

https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://wisc-cs764-f25.hotcrp.com/
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template
https://www.acm.org/publications/proceedings-template

Storage-Disaggregation Architecture

CPU

CPU

CPU

Mem

Mem

Mem

Network

C 10 10010
e A (A A
- EEEE-

Features of disaggregation architecture
« Computation and storage layers are
disaggregated
« Limited computation can happen in the
storage layer

Storage-Disaggregation Architecture

CPU

CPU

CPU

Mem

Mem

Mem

Network

Advantages

 Lower management cost

NJOJo0
e O (3 >

Features of disaggregation architecture
« Computation and storage layers are
disaggregated
« Limited computation can happen in the
storage layer

Disadvantages
* Network becomes a bottleneck

* Independent scaling of computation
and storage

How to Mitigate the Network Bottleneck?

CPU CPU CPU

Mem Mem Mem

Network

o010
e A (3 (A (=
- -

Solution 1: Move data to computation
« Cache storage data in the computation layer
« Example: Snowflake

Solution 2: Move computation to data
« Pushdown computation to the storage layer
 Example: PushdownDB

Today’s Papers — Pushdown DBMS

PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu*, Matt Youill¥, Matthew Woicik!, Abdurrahman Ghanem®,
Marco Serafini¥, Ashmf Abuulnqg.ﬁ Michael Stonebraker!

Institute of

*University of Wi

*Bumian *Qatar Computing Research Institute TUniversity of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem @hbku.edu.qa,

ur du, aaboul

ker @csail mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analyties querics into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently relcased capability
called $3 Select. We show that some DBMS primitives (fiter,

tion, and ion) can always be cost-ff moved
into S3. Other more complex operations (join, top-K, and group-
by) require reimplementation to take advantage of S3 Select
and are often candidates for p We these
capabilities through experimentation using a new DBMS that we
developed, PushdownDB. Experimentation with a collection of
queries including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7 faster than a baseline that does
not use S3 Select.

L. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
wWo c are i managed and

using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of siorage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-
aggregated cloud storage, including Presto [1], Snowflake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data
from the remote storage and caches it in main memory or local
storage, amortizing the network transfer cost. Caching has
been implemented i in Snowﬁake [2] and Redshift Spectrum [3],
[4]. With ds a database
system (DBMS) pushes ns functionality as close to storage
as possible. Previous research [5] and systems (e.g., Brition-
Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza
machine [8]) have shown that this can significantly improve
performance.

Recenty, Amazon Web Services (AWS) iniroduced a fea-
tre called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
$3 [9]. This provides an opportunity to revisit the question of

edu.ga,

how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of 83 Select allows only
certain simple query operators to be pushed into the storage
layer, namely selections, projections, and simple aggregations.
Other operaors require new implementations 1o take advan-
tage of $3 Select. Moreover, 83 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with disaggregated storage. Specifically, we consider
filter (with and without indexing), join, group-by, and top-K
as candidates. We implement these operators to take advan-
tage of computation pushdown through S3 Select and study
their cost and performance. We show dramatic performance
improvement and cost reduction, even with the relatively high
cost of §3 Select. In addition, we analyze queries from the
TPC-H benchmark and show similar benefits of performance
and cost. We point out the limitations of the current §3 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
this is the first extensive study of pushdown computing for
database operators in a disaggregated architecture. A more
detailed description of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing instances (ie., EC2: Elastic Compute Cloud) and
storage services (i.e., EBS: Elastic Block Store, EFS: Elastic
File System, and $3: Simple Storage Service). Compared to
other storage services, 83 is a highly available object store
that provides virtually infinite storage capacity for regular
users with relatively low cost, and is supported by many
popular cloud databases, including Presto [1], Hive [11], Spark
SQL [12], Redshift Spectrum [3], and Snowflake [2]. The
storage nodes in S3 are separate from compute nodes. Hence,
2 DBMS uses $3 as a siorage system and transfers needed
data over a network for query processing.

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called §3
Select [9] in 2018 to push limited computation to the storage
nodes. Al the current time, $3 Select supporis only selection,

ICDE 2020

FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik®, Yizhou Liu®,

Xiangyao Yu', Marco Serafini, Ashraf Aboul

°, Michael Stonebraker®

'University of Wisconsin-Madison, *Burnian, *M:
A

h Institute of Technology, *University of

herst, *Qatar Ci
Hyyang673@, liu773@, yxy@cs }wlsc edu, Zmatt. yom]l@burman com, *{mwoicik@, stonebraker@csail Jmit.edu,

umass.edu, *;

Research Institute

edu.qa

ABSTRACT

Modern cloud databases adopt a storage-disaggregation architec-
ture that separates the management of computation and storage.
A major bottleneck in such an architecture is the network con-
necting the computation and storage layers. Two solutions have
been explored to mitigate the bottleneck: caching and computation
pushdown. While both techniques can significantly reduce network
traffic, existing DBMSs consider them as orthogonal techniques
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.

divides computation and storage into separate layers of servers con-
nected through the network, simplifying provisioning and enabling
mdepcndent scaling of resources. However, disaggregation requires

1 principle of DBMSs: “move
compmauan to data rather than data to computation”. Compared
to the traditional shared-nothing architecture, which embodies that
principle and stores data on local disks, the network in the disag-
gregation architecture typically has lower bandwidth than local
disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and computation pushdown. Both solutions can
reduce the amount of data transferred between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake (21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum (8] can also be consid-
ered as a cache with user-controlled contents. With computation

We also propose a novel Weighted-LFU cache policy
that takes into account the cost of pushdown computation. Our
experimental evaluation on the Star Schema Benchmark shows that
the hybrid execution outperforms both the conventional caching-
only archi and pushd Iy by 2.2x. In the
hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yife Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021,

doir10.14778/3476249.3476265

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
Bty hash com/clonid

P

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
ern cloud DBMSs adopt a storage-disaggregation architecture that

“This work i licensed under the Creative Commons BY-NC-ND 4. ltematioeal
view a copy of
tain permission by

Publication rights

emailing g Copyright is held by the
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
dok:10.14778/3476249.3476265

VLDB 2021

filtering and are close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53). The fundamental reasons that
caching and pushdown have performance benefits are that local
memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49), Netezza [23), Redshift Spectrum (8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local computation on cached segments and pushdown on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine granularity. While not all relational operators
are separable, some of the most commonly-used ones are, including
filtering, projection, aggregation. We introduce a merge operator to
combine the outputs from caching and pushdown.

Separable operators open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

‘The VLDB Journal (2024) 33:1643-1670
https://doi.org/10.1007/500778-024-00867-8

REGULAR PAPER

FlexpushdownDB: rethinking computation pushdown for cloud OLAP

DBMSs

Yifei Yang'(- Xiangyao Yu! - Marco Serafini? - Ashraf

3 . Michael 4

Received: 22 February 2024 / Revised: mmyzmafm:epmd 1 July 2024/ Published online: 10 July 2024

©The Author(s), under exclusive licence to Spring

Abstract

, part of Springer Nature 2024

Modern cloud-native OLAP databases adopt a sterage-disaggregation architecture that separates the management of compu-

tation and siorage. A major in such an

is the network the

and storage layers.

C hd, isa

solution to tackle this issue, which offloads some computation tasks to the storage

layer to reduce network lmﬁic Tlus paper presents FlexPushdownDB (FPDB), where we revisit the design of computation

inast

and then introduce several optimi

ns to further accelerate query pro-

cessing. First, FPDB supports hybrid query execution, which combines local computation on cached data and computation
pushdown to cloud storage at a fine granularity, Within the cache, FPDB uses a novel Weighted-LFU cache replacement
policy that takes into account the cost of pushdown computation. Second, we design adaptive pushdown as a new mecha-
nism to avoid throttling the storage-layer computation during pushdown, which pushes the request back to the computation
layer at runtime lf lh: storage-layer computational resource is insufficient. Finally, we derive a general principle to identify

tasks, by

common patterns of pushdown capabilities in existing systems,

and further propose two new pushdown operators, namely, selection bitmap and distributed data shuffle. Evaluation on SSB
and TPC-H shows each optimization can improve the performance by 2.2, 1.9, and 3x respectively.

Keywords OLAP - Cloud databases - Caching - Ce

1 Introduction

Database management systems (DBMSs) are gradually mov-
ing to the cloud for high clasllcuy and low cost Mndcrn

- Adaptive query p ing - Query

that divides computation and storage into separate lay-
ers connected through the network, which simplifies pro-
visioning and enables independent scaling of resources.
Disaggregation requires rethinking a fundamental principle

cloud DBMSs adopt a

B2 Yifei Yang
yyang6T3@wisc.edu
Xiangyao Yu
yxy @cs.wisc.edu
Marco Serafini
marco@es umass.cdu
Ashraf Aboulnaga
ashraf.aboulnaga@uta.cdu

Michael Stonebraker
stonebraker @ csail mit.edu

University of Wisconsin Madison, Madison, WI, USA
2 University of Massachusets- Amherst, Amherst, MA, USA

University of Texas at Arlington, Arlington, TX, USA
Institute of Technology, Cambridge, MA, USA

of d DBMSs: “move computation 1o data rather
than data to computation”. ConVentlunally, the network in
the di: i i is d as the major
P bottleneck [70). Computation pushdown is a
promising solution to miti network bottl where

some computation logic is sent and evaluated close to the
storage, thereby reducing the network data transfer. Exam-
ples of pushdown systems include Oracle Exadata [79], IBM
Netezza [41], AWS Redshift Spectrum [4], AWS Aqua[11],
and PushdownDB [84]. While recent improvements in net-
work and storage mitigate the performance bottleneck of
disaggregation, reducing data transfer from storage can still
provide performance improvement and cost reduction. More-
over, computation pushdown can help alleviate the issues of
request throttling and instability incurred by noisy neighbors
[44, 60] and the usage of packet-switch algorithms like token
bucket [68, 71], which can potentially improve the reliabil-

&) Springer

VLDBJ 2024

PushdownDB — Architecture

S EC2 (r4.8xl
Mo (r4.8xlarge)
Network |— 10 Gbit Ethernet

I_’ S3 Select

@ Ei Ei Ei I_’ Simple Storage Service (S3)

PushdownDB implementation

— Single-node, multi-process Python-based database
— Ubuntu 16.04.5 LTS, Python version 2.7.12.

S3 Select

CPU Before:
Mem

Network

CPU CPU CPU CPU 83 Select :f"""""‘:
@ @ @ @ Amazon S3 e,

Supports limited SQL queries on CSV and Parquet data format

— S3 Select recognizes database schema for both data formats
— Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

PushdownDB — Supported Operators

S3 Select supports PushdownDB supports
— Filter — Filter
— Project — Project
— Aggregate without group-by ~ Top-K
— Join

— Group-by

Filter

Server-side filtering
— Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

CPU

Mem

10

Filter

Server-side filtering

— Compute server loads entire table from S3 and filters locally

S3-side filtering

— Push down predicate evaluation using S3 Select

CPU
Mem

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

ERE=

11

Join

Baseline Join
— Server loads both tables from S3 and joins locally

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C CUSTKEY
AND C ACCTBAL <= upper c acctbal
AND O ORDERDATE < upper o orderdate

12

Join

Baseline Join
— Server loads both tables from S3 and joins locally

Filtered Join
— Server pushes filtering predicates to S3 to load both tables

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C CUSTKEY
AND C ACCTBAL <= upper c acctbal
AND O ORDERDATE < upper o orderdate

13

Join

Bloom Join
— Step 1: Server loads the smaller table, builds a bloom filter using join key
— Step 2: Server sends the filter via S3 Select to load the bigger table
— Bloom filter is pushed down as a predicate

SELECT
FROM S30bject
WHERE SUBSTRING(”1000011...111101101",
((69 * CAST (attr as INT) + 92) % 97) %$ 68 + 1, 1) = "1"

\O

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C_CUSTKEY
AND C ACCTBAL <= upper c acctbal
AND O ORDERDATE < upper o orderdate

Evaluation — Join

Runtime
[Baseline Join [Filtered Join [Bloom Join
.. %
.. -
w
o
__ S
Y Y o N e)
Q Q Q . . .
Q'QQ Qﬁp QY Q Q Q

Bloom Filter False Positive Rate

SELECT SUM(O TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O CUSTKEY C CUSTKEY
AND C ACCTBAL <= upper c acctbal
AND O ORDERDATE < upper o orderdate

0.020

0.015

0.010

0.005

0.000

Cost Breakdown

[Baseline Join

[Filtered Join [J Bloom Join

1 Compute Cost KN Scan Cost
AR KX Request Cost P71 Transfer Cost | |
I < ‘ e]]

N N N \
7 AN \.\ \\ >— >

" " . N))

Q Q Q . : :

QQ Q_Q QO Q Q N

Bloom Filter False Positive Rate

15

Evaluation — All Operators and TPC-H

L 181 : PusthWI‘lDB (Baseline) : PushdownDB (Optlmlzed) B
. o B [— o R b e - —
Filter Group-by Top-K Join TPCH Q1 TPCHQ3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(a) Runtime
IS [ComputeCost| /=3 @ PushdownDB (Baseline) [PushdownDB (Optimized) | |
LAJ Request Cost
U C< scan Cost T T e
L \§ __________ (72 Transfor Cost |- e i oo
Filter Group-by Top-K Join TPCH Q1 TPCHQ3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(b) Cost

Overall, PushdownDB reduces runtime by 6.7x and reduces cost by 30%

16

Today’s Papers — Pushdown DBMS

PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu*, Matt Youill¥, Matthew Woicik!, Abdurrahman Ghanem®,
Marco Serafini¥, Ashmf Abuulnqg.ﬁ Michael Stonebraker!

Institute of

*University of Wi

*Bumian *Qatar Computing Research Institute TUniversity of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem @hbku.edu.qa,

ur du, aaboul

ker @csail mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analyties querics into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently relcased capability
called $3 Select. We show that some DBMS primitives (fiter,

tion, and ion) can always be cost-ff moved
into S3. Other more complex operations (join, top-K, and group-
by) require reimplementation to take advantage of S3 Select
and are often candidates for p We these
capabilities through experimentation using a new DBMS that we
developed, PushdownDB. Experimentation with a collection of
queries including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7 faster than a baseline that does
not use S3 Select.

L. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
wWo c are i managed and

using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of siorage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-
aggregated cloud storage, including Presto [1], Snowflake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data
from the remote storage and caches it in main memory or local
storage, amortizing the network transfer cost. Caching has
been implemented i in Snowﬁake [2] and Redshift Spectrum [3],
[4]. With ds a database
system (DBMS) pushes ns functionality as close to storage
as possible. Previous research [5] and systems (e.g., Brition-
Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza
machine [8]) have shown that this can significantly improve
performance.

Recenty, Amazon Web Services (AWS) iniroduced a fea-
tre called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
$3 [9]. This provides an opportunity to revisit the question of

ICDE 2020

edu.ga,

how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of 83 Select allows only
certain simple query operators to be pushed into the storage
layer, namely selections, projections, and simple aggregations.
Other operaors require new implementations 1o take advan-
tage of $3 Select. Moreover, 83 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with disaggregated storage. Specifically, we consider
filter (with and without indexing), join, group-by, and top-K
as candidates. We implement these operators to take advan-
tage of computation pushdown through S3 Select and study
their cost and performance. We show dramatic performance
improvement and cost reduction, even with the relatively high
cost of §3 Select. In addition, we analyze queries from the
TPC-H benchmark and show similar benefits of performance
and cost. We point out the limitations of the current §3 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
this is the first extensive study of pushdown computing for
database operators in a disaggregated architecture. A more
detailed description of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing instances (ie., EC2: Elastic Compute Cloud) and
storage services (i.e., EBS: Elastic Block Store, EFS: Elastic
File System, and $3: Simple Storage Service). Compared to
other storage services, 83 is a highly available object store
that provides virtually infinite storage capacity for regular
users with relatively low cost, and is supported by many
popular cloud databases, including Presto [1], Hive [11], Spark
SQL [12], Redshift Spectrum [3], and Snowflake [2]. The
storage nodes in S3 are separate from compute nodes. Hence,
2 DBMS uses $3 as a siorage system and transfers needed
data over a network for query processing.

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called §3
Select [9] in 2018 to push limited computation to the storage
nodes. Al the current time, $3 Select supporis only selection,

FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik®, Yizhou Liu®,

Xiangyao Yu', Marco Serafini, Ashraf Aboul

°, Michael Stonebraker®

'University of Wisconsin-Madison, *Burnian, *M:
A

h Institute of Technology, *University of

herst, *Qatar Ci

Research Institute

Hyyang673@, liu773@, yxy@cs }wlsc edu, Zmatt. yom]l@burman com, *{mwoicik@, stonebraker@csail Jmit.edu,

umass.edu, *;

edu.qa

ABSTRACT

Modern cloud databases adopt a storage-disaggregation architec-
ture that separates the management of computation and storage.
A major bottleneck in such an architecture is the network con-
necting the computation and storage layers. Two solutions have
been explored to mitigate the bottleneck: caching and computation
pushdown. While both techniques can significantly reduce network
traffic, existing DBMSs consider them as orthogonal techniques
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.

divides computation and storage into separate layers of servers con-
nected through the network, simplifying provisioning and enabling
mdepcndent scaling of resources. However, disaggregation requires

1 principle of DBMSs: “move
compmauan to data rather than data to computation”. Compared
to the traditional shared-nothing architecture, which embodies that
principle and stores data on local disks, the network in the disag-
gregation architecture typically has lower bandwidth than local
disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and computation pushdown. Both solutions can
reduce the amount of data transferred between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake (21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum (8] can also be consid-
ered as a cache with user-controlled contents. With computation

We also propose a novel Weighted-LFU cache policy
that takes into account the cost of pushdown computation. Our
experimental evaluation on the Star Schema Benchmark shows that
the hybrid execution outperforms both the conventional caching-
only archi and pushd Iy by 2.2x. In the
hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yife Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021,

doir10.14778/3476249.3476265

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
Bty hash com/clonid

P

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
ern cloud DBMSs adopt a storage-disaggregation architecture that

“This work i licensed under the Creative Commons BY-NC-ND 4. ltematioeal
view a copy of
tain permission by

Publication rights

emailing g Copyright is held by the
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
dok:10.14778/3476249.3476265

filtering and are perfc close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53). The fundamental reasons that
caching and pushdown have performance benefits are that local
memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49), Netezza [23), Redshift Spectrum (8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local computation on cached segments and pushdown on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine granularity. While not all relational operators
are separable, some of the most commonly-used ones are, including
filtering, projection, aggregation. We introduce a merge operator to
combine the outputs from caching and pushdown.

Separable operators open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

VLDB 2021

‘The VLDB Journal (2024) 33:1643-1670
https://doi.org/10.1007/500778-024-00867-8

REGULAR PAPER

FlexpushdownDB: rethinking computation pushdown for cloud OLAP

DBMSs

Yifei Yang'(- Xiangyao Yu! - Marco Serafini? - Ashraf

3 . Michael 4

Received: 22 February 2024 / Revised: mmyzmafm:epmd 1 July 2024/ Published online: 10 July 2024

©The Author(s), under exclusive licence to Spring

Abstract

, part of Springer Nature 2024

Modern cloud-native OLAP databases adopt a sterage-disaggregation architecture that separates the management of compu-

tation and siorage. A major in such an

is the network the

and storage layers.

C hd, isa

solution to tackle this issue, which offloads some computation tasks to the storage

layer to reduce network lmﬁic Tlus paper presents FlexPushdownDB (FPDB), where we revisit the design of computation

inast

and then introduce several optimi

ns to further accelerate query pro-

cessing. First, FPDB supports hybrid query execution, which combines local computation on cached data and computation
pushdown to cloud storage at a fine granularity, Within the cache, FPDB uses a novel Weighted-LFU cache replacement
policy that takes into account the cost of pushdown computation. Second, we design adaptive pushdown as a new mecha-
nism to avoid throttling the storage-layer computation during pushdown, which pushes the request back to the computation
layer at runtime lf lh: storage-layer computational resource is insufficient. Finally, we derive a general principle to identify

tasks, by

common patterns of pushdown capabilities in existing systems,

and further propose two new pushdown operators, namely, selection bitmap and distributed data shuffle. Evaluation on SSB
and TPC-H shows each optimization can improve the performance by 2.2, 1.9, and 3x respectively.

Keywords OLAP - Cloud databases - Caching - Ce

1 Introduction

Database management systems (DBMSs) are gradually mov-
ing to the cloud for high clasllcuy and low cost Mndcrn

- Adaptive query p ing - Query

that divides computation and storage into separate lay-
ers connected through the network, which simplifies pro-
visioning and enables independent scaling of resources.
Disaggregation requires rethinking a fundamental principle

cloud DBMSs adopt a

B2 Yifei Yang
yyang6T3@wisc.edu
Xiangyao Yu
yxy @cs.wisc.edu
Marco Serafini
marco@es umass.cdu
Ashraf Aboulnaga
ashraf.aboulnaga@uta.cdu

Michael Stonebraker
stonebraker @ csail mit.edu

University of Wisconsin Madison, Madison, WI, USA
2 University of Massachusets- Amherst, Amherst, MA, USA

University of Texas at Arlington, Arlington, TX, USA
Institute of Technology, Cambridge, MA, USA

of d DBMSs: “move computation 1o data rather
than data to computation”. ConVentlunally, the network in
the di: i i is d as the major
P bottleneck [70). Computation pushdown is a
promising solution to miti network bottl where

some computation logic is sent and evaluated close to the
storage, thereby reducing the network data transfer. Exam-
ples of pushdown systems include Oracle Exadata [79], IBM
Netezza [41], AWS Redshift Spectrum [4], AWS Aqua[11],
and PushdownDB [84]. While recent improvements in net-
work and storage mitigate the performance bottleneck of
disaggregation, reducing data transfer from storage can still
provide performance improvement and cost reduction. More-
over, computation pushdown can help alleviate the issues of
request throttling and instability incurred by noisy neighbors
[44, 60] and the usage of packet-switch algorithms like token
bucket [68, 71], which can potentially improve the reliabil-

&) Springer

VLDBJ 2024

17

Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
— Examples: default presto, hive, SparkSQL, etc.

18

Mitigate Network Bottleneck

LOCal Ilillill
Cache -
Caching

table data

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node
— Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

19

Mitigate Network Bottleneck

—nun o
LOCal II:II:II $
Cache >4 .

02020
Caching Pushdown results

table data

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
— Examples: Redshift spectrum, Aqua, PushdownDB, etfc.

20

Caching vs. Pushdown

Caching performance
Caching-only iIncreases with a bigger cache

Pushdown-only Pushdown performance is
independent of cache size

Runtime

Cache size

21

Caching vs. Pushdown

Runtime

Caching-only

Hybrid

Pushdown-only

Cache size

Caching performance
iIncreases with a bigger cache

Pushdown performance is
independent of cache size

A hybrid design may achieve
the best of both worlds

22

Mitigate Network Bottleneck

AN, w T —MA,
Iéocfall :..: % Iéoc?ll
ache o - ache
Caching Pushdown results
table data

SEE .. GEEE |£€F{€F

Baseline (Pullup): always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
Hybrid: hybrid caching and pushdown at fine granularity

23

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB

24

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity
— Segment as the caching granularity

Employee

m_ Partition 2
D Age |.. [ENUTNE

Source code: https://github.com/cloud-olap/FlexPushdownDB

25

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity
— Segment as the caching granularity

Employee

Partition 2

Partition 1

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB

26

https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB
https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Main modules

Query plan

—

A

Hybrid executor

— P

Cache manager

Admission
« Eviction

Caching

Local Cache

i request

02020,

EEEE -

v

i

I

27

FlexPushdownDB (FPDB)

Separable operators

— Can execute separately using
cached segments and cloud
storage

— Example: projection, selection,
aggregation, hash join (partially)

Il
1

Local Cache

=

(a) Original Query Plan

[Scan

Local Cache

Scan

OBe

iy

(b) Separable Query Plan

28

FlexPushdownDB (FPDB)

Separable operators

— Can execute separately using
cached segments and cloud
storage

— Example: projection, selection,
aggregation, hash join (partially)

Query execution

— Heuristic: exploit caching when
possible, otherwise pushdown as
much as possible

Il
1

Local Cache

=

(a) Original Query Plan

11

Merge

[Scan

Local Cache

Scan

OBe

iy

(b) Separable Query Plan

29

Separable Query Plan — Example

1

Group-by

I

Hash Join

™

(Relation R) | Merge

(A 1 B]

Filtering Scan || Filtering Scan

Filtering Scan

Merge

X

C, D,

G

(Relation S)

SELECT R.B,
FROM R, S
WHERE R.A =
GROUP BY R.B

sum(S.D)

S.C AND R.B > 1@ AND S.D > 20

Local Cache

04

A; |[| B2

Relation R

Filtering Scan

Filtering Scan

A

B,

A,

B,

EE

o

04

G ||| D

G

D,

Relation S

C

D,

G

D,

==

Cloud Storage

30

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

31

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

32

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
— Increment the frequency counter with the estimate miss cost
— Estimated miss cost = network cost + scan cost + compute cost

33

Performance Evaluation

Conclusion:

—e— Pullup Pushdown-only = —%— Caching-only = —#— Hybrid
500
o -
—~ 400
3
%
— 300
®
E
E 200
"~ 100 y .
- —
D T T T T T
S 10 15 20 25

Cache Size (GB)

FPDB outperforms baselines by 2.2x

34

Evaluation — Weighted-LFU

= Hybrid (LFU) === Hybrid (WLFU)

(o))
o

Runtime (sec)
e
o

b
o

0.6 0.9 1.2 1.5 2.0
Skew Factor (6)

Weighted-LFU outperforms the baseline LFU by 37%

35

Evaluation — Resource Usage

Table 2: Network Usage (GB) of different architectures.

Architecture Pullup PD-only CA-only Hybrid

Usage 460.9 37.1 112.6

36

Evaluation — Resource Usage

Table 2: Network Usage (GB) of different architectures.

Architecture Pullup PD-only CA-only Hybrid
Usage 460.9 37.1 112.6 7.9

Table 3: CPU Usage (with dedicated compute servers) — CPU time

(in minutes) of different architectures (normalized to the time of 1
vCPU).

Architecture Pullup PD-only CA-only Hybrid

Compute 249.6 48.5 70.3 23.2
Storage 0.0 31.1 0.0 7.4

Total 249.6 79.6 70.3

37

Today’s Papers — Pushdown DBMS

PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu*, Matt Youill¥, Matthew Woicik!, Abdurrahman Ghanem®,
Marco Serafini¥, Ashmf Abuulnqg.ﬁ Michael Stonebraker!

Institute of

*University of Wi

*Bumian *Qatar Computing Research Institute TUniversity of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem @hbku.edu.qa,

ur du, aaboul

ker @csail mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analyties querics into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently relcased capability
called $3 Select. We show that some DBMS primitives (fiter,

tion, and ion) can always be cost-ff moved
into S3. Other more complex operations (join, top-K, and group-
by) require reimplementation to take advantage of S3 Select
and are often candidates for p We these
capabilities through experimentation using a new DBMS that we
developed, PushdownDB. Experimentation with a collection of
queries including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7 faster than a baseline that does
not use S3 Select.

L. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
wWo c are i managed and

using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of siorage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-
aggregated cloud storage, including Presto [1], Snowflake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data
from the remote storage and caches it in main memory or local
storage, amortizing the network transfer cost. Caching has
been implemented i in Snowﬁake [2] and Redshift Spectrum [3],
[4]. With ds a database
system (DBMS) pushes ns functionality as close to storage
as possible. Previous research [5] and systems (e.g., Brition-
Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza
machine [8]) have shown that this can significantly improve
performance.

Recenty, Amazon Web Services (AWS) iniroduced a fea-
tre called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
$3 [9]. This provides an opportunity to revisit the question of

ICDE 2020

edu.ga,

how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of 83 Select allows only
certain simple query operators to be pushed into the storage
layer, namely selections, projections, and simple aggregations.
Other operaors require new implementations 1o take advan-
tage of $3 Select. Moreover, 83 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with disaggregated storage. Specifically, we consider
filter (with and without indexing), join, group-by, and top-K
as candidates. We implement these operators to take advan-
tage of computation pushdown through S3 Select and study
their cost and performance. We show dramatic performance
improvement and cost reduction, even with the relatively high
cost of §3 Select. In addition, we analyze queries from the
TPC-H benchmark and show similar benefits of performance
and cost. We point out the limitations of the current §3 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
this is the first extensive study of pushdown computing for
database operators in a disaggregated architecture. A more
detailed description of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing instances (ie., EC2: Elastic Compute Cloud) and
storage services (i.e., EBS: Elastic Block Store, EFS: Elastic
File System, and $3: Simple Storage Service). Compared to
other storage services, 83 is a highly available object store
that provides virtually infinite storage capacity for regular
users with relatively low cost, and is supported by many
popular cloud databases, including Presto [1], Hive [11], Spark
SQL [12], Redshift Spectrum [3], and Snowflake [2]. The
storage nodes in S3 are separate from compute nodes. Hence,
2 DBMS uses $3 as a siorage system and transfers needed
data over a network for query processing.

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called §3
Select [9] in 2018 to push limited computation to the storage
nodes. Al the current time, $3 Select supporis only selection,

FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik®, Yizhou Liu®,

Xiangyao Yu', Marco Serafini, Ashraf Aboul

°, Michael Stonebraker®

'University of Wisconsin-Madison, *Burnian, *M:
A

h Institute of Technology, *University of

herst, *Qatar Ci
Hyyang673@, liu773@, yxy@cs }wlsc edu, Zmatt. yom]l@burman com, *{mwoicik@, stonebraker@csail Jmit.edu,

umass.edu, *;

Research Institute

edu.qa

ABSTRACT

Modern cloud databases adopt a storage-disaggregation architec-
ture that separates the management of computation and storage.
A major bottleneck in such an architecture is the network con-
necting the computation and storage layers. Two solutions have
been explored to mitigate the bottleneck: caching and computation
pushdown. While both techniques can significantly reduce network
traffic, existing DBMSs consider them as orthogonal techniques
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.

divides computation and storage into separate layers of servers con-
nected through the network, simplifying provisioning and enabling
mdepcndent scaling of resources. However, disaggregation requires

1 principle of DBMSs: “move
compmauan to data rather than data to computation”. Compared
to the traditional shared-nothing architecture, which embodies that
principle and stores data on local disks, the network in the disag-
gregation architecture typically has lower bandwidth than local
disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and computation pushdown. Both solutions can
reduce the amount of data transferred between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake (21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum (8] can also be consid-
ered as a cache with user-controlled contents. With computation

We also propose a novel Weighted-LFU cache policy
that takes into account the cost of pushdown computation. Our
experimental evaluation on the Star Schema Benchmark shows that
the hybrid execution outperforms both the conventional caching-
only archi and pushd Iy by 2.2x. In the
hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yife Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021,

doir10.14778/3476249.3476265

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
Bty hash com/clonid

P

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
ern cloud DBMSs adopt a storage-disaggregation architecture that

“This work i licensed under the Creative Commons BY-NC-ND 4. ltematioeal
view a copy of
tain permission by

Publication rights

emailing g Copyright is held by the
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
dok:10.14778/3476249.3476265

VLDB 2021

filtering and are close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53). The fundamental reasons that
caching and pushdown have performance benefits are that local
memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49), Netezza [23), Redshift Spectrum (8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local computation on cached segments and pushdown on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine granularity. While not all relational operators
are separable, some of the most commonly-used ones are, including
filtering, projection, aggregation. We introduce a merge operator to
combine the outputs from caching and pushdown.

Separable operators open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

‘The VLDB Journal (2024) 33:1643-1670
https://doi.org/10.1007/500778-024-00867-8

REGULAR PAPER

FlexpushdownDB: rethinking computation pushdown for cloud OLAP

DBMSs

Yifei Yang'(- Xiangyao Yu! - Marco Serafini? - Ashraf

3 . Michael 4

Received: 22 February 2024 / Revised: mmyzmafm:epmd 1 July 2024/ Published online: 10 July 2024

©The Author(s), under exclusive licence to Spring

Abstract

, part of Springer Nature 2024

Modern cloud-native OLAP databases adopt a sterage-disaggregation architecture that separates the management of compu-

tation and siorage. A major in such an

is the network the

and storage layers.

C hd, isa

solution to tackle this issue, which offloads some computation tasks to the storage

layer to reduce network lmﬁic Tlus paper presents FlexPushdownDB (FPDB), where we revisit the design of computation

inast

and then introduce several optimi

ns to further accelerate query pro-

cessing. First, FPDB supports hybrid query execution, which combines local computation on cached data and computation
pushdown to cloud storage at a fine granularity, Within the cache, FPDB uses a novel Weighted-LFU cache replacement
policy that takes into account the cost of pushdown computation. Second, we design adaptive pushdown as a new mecha-
nism to avoid throttling the storage-layer computation during pushdown, which pushes the request back to the computation
layer at runtime lf lh: storage-layer computational resource is insufficient. Finally, we derive a general principle to identify

tasks, by

common patterns of pushdown capabilities in existing systems,

and further propose two new pushdown operators, namely, selection bitmap and distributed data shuffle. Evaluation on SSB
and TPC-H shows each optimization can improve the performance by 2.2, 1.9, and 3x respectively.

Keywords OLAP - Cloud databases - Caching - Ce

1 Introduction

Database management systems (DBMSs) are gradually mov-
ing to the cloud for high clasllcuy and low cost Mndcrn

- Adaptive query p ing - Query

that divides computation and storage into separate lay-
ers connected through the network, which simplifies pro-
visioning and enables independent scaling of resources.
Disaggregation requires rethinking a fundamental principle

cloud DBMSs adopt a

B2 Yifei Yang
yyang6T3@wisc.edu
Xiangyao Yu
yxy @cs.wisc.edu
Marco Serafini
marco@es umass.cdu
Ashraf Aboulnaga
ashraf.aboulnaga@uta.cdu

Michael Stonebraker
stonebraker @ csail mit.edu

University of Wisconsin Madison, Madison, WI, USA
2 University of Massachusets- Amherst, Amherst, MA, USA

University of Texas at Arlington, Arlington, TX, USA
Institute of Technology, Cambridge, MA, USA

of d DBMSs: “move computation 1o data rather
than data to computation”. ConVentlunally, the network in
the di: i i is d as the major
P bottleneck [70). Computation pushdown is a
promising solution to miti network bottl where

some computation logic is sent and evaluated close to the
storage, thereby reducing the network data transfer. Exam-
ples of pushdown systems include Oracle Exadata [79], IBM
Netezza [41], AWS Redshift Spectrum [4], AWS Aqua[11],
and PushdownDB [84]. While recent improvements in net-
work and storage mitigate the performance bottleneck of
disaggregation, reducing data transfer from storage can still
provide performance improvement and cost reduction. More-
over, computation pushdown can help alleviate the issues of
request throttling and instability incurred by noisy neighbors
[44, 60] and the usage of packet-switch algorithms like token
bucket [68, 71], which can potentially improve the reliabil-

VLDBJ 2024

38

Adaptive Pushdown

Adaptive Pushdown: If pushdown computation is saturated, fallback
to pullup through pushback

Compute Node ‘

~
Pushdown i
request Push back
\ A 4

Adaptive Pushdown
Arbitrator

I

Pushdown
result

Pushback when
estimated pushdown
time > estimated

pushback time

39

Adaptive Pushdown - Evaluation

Storage computational power [—-— No pushdown —+— Eager pushdown —— Adaptive pushdown]
100% 0%

1.5
1.0

0.5

Execution Time

Q5 Q6 Q7 Q8

Q1 Q2 Q3 Qa4 Q9 qio Qi1

Storage computational power

100% 0%

s]] },=..4

Execution Time

05,__f_¥.£x~—-<:£‘ aﬁmﬁaqcﬁéz %———:“rf."f

Qi2 Qiz Qi6 Q7 Q18 Q21 Q22

Fig. 18 Performance Evaluation of ADAPTIVE PUSHDOWN on TPC-H (Execution time is normalized to NO PUSHDOWN)

Advanced Pushdown Operators

Key Characteristics of Pushdown. The required storage-
layer computation is local and bounded

—Local: Pushdown computation does not incur network traffic
among storage servers

—Bounded: pushdown tasks require at most linear amount of CPU
and memory resources over the accessed data size

41

Selection Bitmap Pushdown

SELECT A, B FROM R

WHERE

[predicates on B]

—NAE, wm
Local \ m
Cache |2 Filter
TRES
B
BEHE - G PpOE

(a) Conventional

— N, mm
Local A .rﬁm
Cache v] _Fiiter
e— Compute node
0100...11
020 20 SRR O 20 20 20 Near-storage
H B computation

o—— Cloud storage

(b) Selection Bitmap Pushdown

Fig. 9 Selection Bitmap Pushdown (from the Storage Layer)—
Selection bitmap constructed at storage can be used to filter cached
data at the compute layer

42

Selection Bitmap Pushdown - Evaluation

[Q3 —+— Q4 —4+— Q12 —m— Q14 —— Q19]

100% 1
. 3 :
E 2
: Zé "
D g
2, @
n o'
111 0%-

0 02 04 06 08 1 0O 02 04 06 08
Selectivity Selectivity
(a) Execution Time (b) Network Traffic

1

43

Distributed Shuffle Pushdown

Node 2

e—— Compute node
Shuffle

Near-storage
computation

e—— Cloud storage

(a) Conventional (b) Shuffle Pushdown

Fig. 11 Distributed Data Shuffle Pushdown—Data is directly redis-
tributed to the target compute node from the storage layer

44

Distributed Shuffle Pushdown - Evaluation

B No pushdown I Baseline pushdown Bm Shuffle pushdown

3.0
2.0

Speedup

1.0

0.0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Ql6 Q17 Q18 Q19 Q20 Q21 Q22 GM

Fig. 27 Performance Evaluation of Distributed Data Shuffle Pushdown on TPC-H (normalized to NO PUSHDOWN)

45

Pushdown DBMS — Q/A

* GPU acceleration in compute and pushdown layers?
« Separable operator for multi-way joins?

» Updates and mutable data?

« What about caching intermediate results?

« Compute frequency counter of a missing segment?

46

Next Lecture

Elena Milkai, Xiangyao Yu, Jignesh Patel, Hermes: Off-the-Shelf
Real-Time Transactional Analytics. VLDB, 2025

47

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/hermes.pdf

	Slide 1
	Slide 2: Announcements
	Slide 3: Storage-Disaggregation Architecture
	Slide 4: Storage-Disaggregation Architecture
	Slide 5: How to Mitigate the Network Bottleneck?
	Slide 6: Today’s Papers — Pushdown DBMS
	Slide 7: PushdownDB – Architecture
	Slide 8: S3 Select
	Slide 9: PushdownDB – Supported Operators
	Slide 10: Filter
	Slide 11: Filter
	Slide 12: Join
	Slide 13: Join
	Slide 14: Join
	Slide 15: Evaluation – Join
	Slide 16: Evaluation – All Operators and TPC-H
	Slide 17: Today’s Papers — Pushdown DBMS
	Slide 18: Mitigate Network Bottleneck
	Slide 19: Mitigate Network Bottleneck
	Slide 20: Mitigate Network Bottleneck
	Slide 21: Caching vs. Pushdown
	Slide 22: Caching vs. Pushdown
	Slide 23: Mitigate Network Bottleneck
	Slide 24: FlexPushdownDB (FPDB) Overview
	Slide 25: FlexPushdownDB (FPDB) Overview
	Slide 26: FlexPushdownDB (FPDB) Overview
	Slide 27: FlexPushdownDB (FPDB) Overview
	Slide 28: FlexPushdownDB (FPDB)
	Slide 29: FlexPushdownDB (FPDB)
	Slide 30: Separable Query Plan — Example
	Slide 31: Cache Manager
	Slide 32: Cache Manager
	Slide 33: Cache Manager
	Slide 34: Performance Evaluation
	Slide 35: Evaluation – Weighted-LFU
	Slide 36: Evaluation – Resource Usage
	Slide 37: Evaluation – Resource Usage
	Slide 38: Today’s Papers — Pushdown DBMS
	Slide 39: Adaptive Pushdown
	Slide 40: Adaptive Pushdown - Evaluation
	Slide 41: Advanced Pushdown Operators
	Slide 42: Selection Bitmap Pushdown
	Slide 43: Selection Bitmap Pushdown - Evaluation
	Slide 44: Distributed Shuffle Pushdown
	Slide 45: Distributed Shuffle Pushdown - Evaluation
	Slide 46: Pushdown DBMS – Q/A
	Slide 47: Next Lecture

