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Lecture 13: Transaction Buffer Management
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Today’s Papers: LeanStore and Two-Tree

ICDE 2018
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Agenda

3

Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Two-Tree



Conventional DB Architecture

Page granularity: Data managed in 
page granularity 

Indirection: Use page ID to lookup 
hash table to locate a page
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Conventional DB Performance

Only a small fraction of instructions 
execute useful work

Significant instruction count 
dedicated to buffer management

5[1] Stavros Harizopoulos, et al., OLTP Through the Looking Glass, and What We Found There , SIGMOD 2008



Main-Memory DB Architecture
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No Indirection: reference data 
following pointers 



Main-Memory DB Architecture
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tuple-level) data management 

No Indirection: reference data 
following pointers 

 Focus of LeanStore



Agenda

8

Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Two-Tree



Pointer Swizzling
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Pointer Swizzling

Pages that reside in main memory are directly referenced using 
virtual memory addresses (i.e., pointers)
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Pointer Swizzling

Pages that reside in main memory are directly referenced using 
virtual memory addresses (i.e., pointers)

Swip: the 8-byte memory location referring to a page
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Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple 
swips

– All references must be identified and changed atomically if the page is 
swizzled or unswizzled 
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Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple 
swips

– All references must be identified and changed atomically if the page is 
swizzled or unswizzled 

Solution: each page has a single owning swip
– In-memory data structures must be trees or forests

13

swip 1

(swizzled)

swip 2

(unswizzled)



Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be 
written to disk

– The pointers would not make sense if the system restarts
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Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be 
written to disk

– The pointers would not make sense if the system restarts

Solution: Never unswizzle a page that has swizzled children
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

Must be able to identify parent swip
(to update parent pointer when unswizzling)
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

Must be able to identify parent swip
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For example: B+-trees cannot have 

link pointer
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Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Two-Tree



Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU
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Look for page to replace

If the bit = 0: evict

If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

Updating tracking information for each 

page access is too expensive



Page Replacement — Cooling

Randomly add pages to cooling stage
– Cooling pages are unswizzled but not 

replaced

– Cooling pages enter a FIFO queue; a 
page is replaced if it reaches the end of 
the queue

– Upon an access, a cooling page is 
swizzled
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Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Two-Tree



Latching is Expensive
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Lock Coupling
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Optimistic Lock Coupling
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Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Experiments

Fine-grained in-memory data management 



Experiments
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Main-memory DB 

LeanStore design

– Pointer swizzling 

– Page replacement 

– Optimistic latching 

Two-Tree



Main-Memory DB Architecture
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No Indirection: reference data 
following pointers 



CPU

Fine-Grained Buffer Management

Data is often skewed 
– Few hot records and many cold 

records in a page

– Inefficient memory usage and IO

Idea: cache data in record 
granularity

Challenges:  
– Buffer management 
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Two-Tree Architecture

A logical tree is implemented as two physical 
trees, each with its own buffer management

Move data between trees at record 
granularity 

Different trees can be optimized 
independently 

– Hot tree can fit in memory

– Hot tree can use memory-optimized structures
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Record Migration

Migration of a record = insertion to a tree and/or deletion from a tree
– The tree structure is adjusted accordingly 

Downward migration 
– Clock replacement to find eviction candidate 

Upward migration 
– Probabilistic with a sampling rate D (0 < D ≤ 1) 

Inclusive versus exclusive
– Removal from bottom tree when inserting to the top tree? 

– By default choose inclusive 
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Two-Tree Operations 

• Point lookup
– Search the top tree, if found, return 

– Otherwise search the bottom tree 

– Handle migration logic 

• Update 
– If found in top tree, set dirty bit, update record (record will be written back to 

bottom tree during eviction)

– Otherwise update in the bottom tree 

– Handle migration logic 
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Two-Tree Operations 

• Insert
– Perform Lookup, if does not exist, insert to top tree and set dirty bit 

• Delete 
– Search top tree, if found, set delete bit 

– Otherwise insert placeholder record: empty payload + delete bit set

– Delete applied to bottom tree when the record is evicted

• Range scan 
– Scan both trees 

– If a record exists in both trees, use the one in the top tree
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Durability and Recovery 

System transactions for record migration 
– Lightweight, do not force log record to storage 

Discussion question: do we need to log for migration at all? 
– Two physical trees representing a single logical tree 

– Maybe sufficient to recover only the logical tree

39



Evaluation — 1-Tree vs. 2-Tree

Benefits of 2-tree design 
– More hot records can be cached
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Evaluation — Top-Tree Implementation
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Memory-optimized top-tree leads to better performance 



Discussion

2-Tree might perform worse than 1-Tree for the following operations: 
– Scan: always need to scan bottom tree

– Negative lookup: always need to search bottom tree  
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Q/A – Transaction Buffer Management
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Adaptive and learning-based promotion? 

Why sampling-based upward migration? Better alternatives? 

Scale to multiple threads? 

High migration cost when hot set changes rapidly? 

Scale to a distributed, sharded environment? 

Extend to non-tree structures (hash table)? 



Next Lecture

Submit review for

Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent 
Operations on B-Trees. ACM Transactions on Database Systems, 
1981
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https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/blink.pdf
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