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Abstract—Disk-based database systems use buffer managers
in order to transparently manage data sets larger than main
memory. This traditional approach is effective at minimizing
the number of /O operations, but is also the major source of
overhead in comparison with in-memory systems. To avoid this

i y database systems abandon buffer
management altogether, which makes handling data sets larger
than main memory very difficult.

In this work, we revisit this fundamental dichotomy and design
a novel storage manager that is optimized for modern hardware.
Our evaluation, which is based on TPC-C and micro benchmarks,
shows that our app has little in i
with a pure in-memory system when all data resides in main
memory. At the same time, like a traditional buffer manager,
it is fully transparent and can manage very large dala sets
effectively. Furthermore, due to low-overhead synchronization,
our implementation is also highly scalable on multi-core CPUs.

1. INTRODUCTION

Managing large data sets has always been the raison d’étre
for database systems. Traditional systems cache pages using
a buffer manager, which has complete knowledge of all page
accesses and transparently loads/evicts pages from/to disk. By
storing all data on fixed-size pages, arbitrary data structures,
including database tables and indexes, can be handled uniformly
and transparently.

While this design succeeds in minimizing the number of /O
operations, it incurs a large overhead for in-memory workloads,
which are increasingly common. In the canonical buffer pool
implementation [1], each page access requires a hash table
lookup in order to translate a logical page identifier into an
in-memory pointer. Even worse, in typical implementations
the data structures involved are synchronized using multiple
latches, which does not scale on modern multi-core CPUs. As
Fig. 1 shows, traditional buffer manager implementations like
BerkeleyDB or WiredTiger therefore only achieve a fraction
of the TPC-C performance of an in-memory B-tree.

This is why main-memory database systems like H-Store [2],
Hekaton [3], HANA [4], HyPer [5], or Silo [6] eschew buffer
management altogether. Relations as well as indexes are directly
stored in main memory and virtual memory pointers are used
instead of page identifiers. This approach is certainly efficient.
However, as data sizes grow, asking users to buy more RAM
or throw away data is not a viable solution. Scaling-out an in-
memory database can be an option, but has downsides including
hardware and administration cost. For these reasons, at some
point of any main-memory system’s evolution, its designers
have to implement support for very large data sets.
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Fig. 1. Single-threaded in-memory TPC-C performance (100 warehouses).

Two representative proposals for efficiently managing larger-
than-RAM data sets in main-memory systems are Anti-
Caching [7] and Siberia [8], [9], [10]. In comparison with a
traditional buffer manager, these approaches exhibit one major
weakness: They are not capable of maintaining a replacement
strategy over relational and index data. Either the indexes,
which can constitute a significant fraction of the overall data
size [11], must always reside in RAM, or they require a separate
mechanism, which makes these techniques less general and
less transparent than traditional buffer managers.

Another reason for reconsidering buffer managers are the
increasingly common PCle/M2-attached Solid State Drives
(8SDs), which are block devices that require page-wise accesses.
These devices can access multiple GB per second, as they
are not limited by the relatively slow SATA interface. While
modern SS8Ds are still at least 10 times slower than DRAM in
terms of bandwidth, they are also cheaper than DRAM by a
similar factor. Thus, for economic reasons [12] alone, buffer
managers are becoming attractive again. Given the benefits of
buffer managers, there remains only one question: Is ir possible
to design an efficient buffer manager for modern hardware?

In this work, we answer this question affirmatively by
designing, implementing, and evaluating a highly efficient
storage engine called LeanStore. Our design provides an
abstraction of similar functionality as a traditional buffer
manager, but without incurring its overhead. As Fig. 1 shows,
LeanStore’s performance is very close to that of an in-memory
B-tree when executing TPC-C. The reason for this low overhead
is that accessing an in-memory page merely involves a simple,
well-predicted if statement rather than a costly hash table
lookup. We also achieve excellent scalability on modern multi-
core CPUs by avoiding fine-grained latching on the hot path.
Overall, if the working set fits into RAM, our design achieves
the same performance as state-of-the-art main-memory database
systems. At the same time, our buffer manager can transparently
manage very large data sets on background storage and, using
modern SSDs, throughput degrades smoothly as the working
set starts to exceed main memory.
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ABSTRACT buffer pool and cold blacks reside on secondary storage. This ap-

Real-world data sets almost always exhibit skew, ie., a majority
of the accesses go to a minority of the records. Obviously, Smith
and Brown are more popular names than Stonebraker and Graefe.
Traditional block-oriented index structures such as B-trees are sub-
optimal for skewed data because an index block often has a small
number of hot records and a larger number of cold ones. This results
in poor main memory utilization and increased cost.

To alleviate this problem, we propose a 2-TREE architecture,
where hot index records are in one tree and cold ones are in a second
tree. Hot tree blocks are frequently accessed and likely to remain in
main memory, resulting in improved main memory utilization. Qur
core idea is to employ a lightweight general migration protocol to
move records between trees in both directions when appropriate
and to maintain access statistics at low cost.

In addition, the two trees can be configured separately for hard-
ware differences. One tree can be optimized for main memory while
the second exploits secondary storage. Obviously, the 2-TREE idea
can also be generalized to multiple storage levels and/or devices.
We show how the 2-TRek idea and record migration can be applied
to both B+trees and LSM-trees to improve their memory utilization
significantly (by 15% and 20x respectively) on a highly skewed
workload. We also observed up to 1.7x throughput improvement
on a Zipfian-skewed 10-bound workload compared to traditional
single B+tree or LSM-tree using the same amount of main memory.
Unlike existing solutions for improving memory utilization at the
cost of inferior range scan performance, 2-TREE refuses to make
such a compromise.

1 INTRODUCTION
Real-world keyed data is invariably highly skewed. A subset (the

proach manages and migrates both main memory and disk-resident
data at block granularity. On skewed data sets main memory blocks
might have only one hot record in a block containing hundreds
of cold records. This results in poor memory utilization and sub-
aptimal performance.

In this paper, we ad igrating data at the d-level.
We study a 2-Tree architecture in which there are two separate
tree data structures, one (top tree) for the hot records and a second
(bottom tree) for the cold ones. When a hot record becomes cold,
it is migrated from one tree to the other. Likewise, records can
move in the other direction. At the core of this architecture is a
general-purpose migration protocol, which can accurately detect
and maintain hot records at low cost. It adds 3 bits per hot record
and works with any tree data structures. With this clustering of
hot records, 2-TREE significantly increases memory utilization on
skewed data.

Another advantage of this architecture is that the two data struc-
tures can be optimized separately for their underlying storage
medium. The hot structure can be optimized for main memory,
while the cold structure can be optimized for secondary storage.
Therefore, 2-TReE can be used as an indexing architecture for main-
memory database indexing that extends to workloads larger than
memory [11, 13].

We can also generalize 2-TREE architecture to an N-TReE archi-
tecture to adapt to systems with more than two distinct storage
levels and/or devices. While this is somewhat similar to a well-
known multi-tree structure, LSM-tree [28], N-Tree moves data
upwards upon read as well. Such upward migration can help im-
prove memory utilization under read-heavy workloads for which
LSM-tree is not optimized.

In this paper, we present three case studies of applying 2-TREE

hil and d-level migration. First, we study an applica-

working set) of the data has a much higher access frequency than
the rest [3, 6, 7, 33, 39). For example, celebrities on social media
get orders of magnitude more page views than average users. On
the NYSE 40 stocks account for 60 percent of the daily transaction
volume. Generally, the hot records are spread across the entire
key space [8] rather than clustered in a few subranges. Lastly, this
working set is often not static [4]. For example, trending tweets
and breaking news change over time.

The traditional approach to indexing keyed data sets is to employ
a homogeneous data structure such as B+tree with a main memory
buffer pool. In this way, hot blocks are cached in the main memory

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authers and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR "23). January 8-11, 2023, Amsterdam, The
Netherlands.
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tion of 2-Trek for indexing in main-memory database in a larger-
than-memory setting [11, 13] and show that it can outperform
the Anti-Caching [11] approach significantly. Second, we show
that two buffer-managed B+trees combined with record migration
can signi ly outperform a st: f-the-art single B+tree im-
plementation [19] by improving buffer pool memory utilization
using the same amount of main memory. Lastly, we show a prelimi-
nary N-TREE imp ion by simply augmenting LSM-tree with
record-level upward migration. This improves their performance
significantly versus vanilla LSM-trees on read-heavy workloads.
We summarize our contributions as follows:

& We propose the 2-TrEE architecture to address the limi-
tations of existing approaches for managing larger-than-
memory indexes.

* We propose an efficient record migration protocol that works
between any two tree structures.
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Conventional DB Architecture
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Conventional DB Performance
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Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a
main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-
cuting the transaction on a no-overhead kernel.

Only a small fraction of instructions
execute useful work

Significant instruction count
dedicated to buffer management

[1] Stavros Harizopoulos, et al., OLTP Through the Looking Glass, and What We Found There, SIGMOD 2008
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Pointer Swizzling
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Pointer Swizzling
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(a) traditional buffer manager (b) swizzling-based buffer manager

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)



Pointer Swizzling
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(a) traditional buffer manager (b) swizzling-based buffer manager

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)

Swip: the 8-byte memory location referring to a page



Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple
SWIps

— All references must be identified and changed atomically if the page is
swizzled or unswizzled

swip 1 SWip 2

(swizzled) \ / (unswizzled)
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Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple
SWIps

— All references must be identified and changed atomically if the page is
swizzled or unswizzled

Solution: each page has a single owning swip
— In-memory data structures must be trees or forests

swip 1 \ / s%
(swizzled) (un led)

13



Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

— The pointers would not make sense if the system restarts

swizzled

unswizzled




Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

— The pointers would not make sense if the system restarts
Solution: Never unswizzle a page that has swizzled children

swizzled

unswizzled




Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page
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for speculative unswizzling
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page

—Must be able to identify parent swip
(to update parent pointer when unswizzling)

swizzled
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Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip
Constraint 2: Never unswizzle a page that has swizzled children

—Must be able to iterate over all swips on a page
—Must be able to identify parent swip

For example: B+-trees cannot have
link pointer

19
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

Look for page to replace
If the bit = O: evict
If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1
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Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
— An approximation of LRU

Look for page to replace
If the bit = O: evict
If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

-

Updating tracking information for each
page access is too expensive
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2

1

B
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Page Replacement — Cooling

Randomly add pages to cooling stage

— Cooling pages are unswizzled but not
replaced

— Cooling pages enter a FIFO queue; a
page is replaced if it reaches the end of
the queue

— Upon an access, a cooling page is
swizzled

load,
swizzle

unswizzle
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Latching Is Expensive
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Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a
main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-
cuting the transaction on a no-overhead kernel.
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Lock Coupling
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Optimistic Lock Coupling
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Experiments

TPC-C throughput [txns/sec]
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Fig. 7. Impact of the 3 main LeanStore features. Fig. 8. Multi-threaded, in-memory TPC-C on 10-core system.
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Main-Memory DB Architecture
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Fine-Grained Buffer Management

Data is often skewed

— Few hot records and many cold CPU
records in a page

— Inefficient memory usage and IO
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— Buffer management . )
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Two-Tree Architecture

A logical tree is implemented as two physical [ putter Pool }
trees, each with its own buffer management
/Storage \
Move data between trees at record i i T T
granularity "1 1 1 Enininln
K Hot B-tree Cold B-tree/

Different trees can be optimized
iIndependently

— Hot tree can fit in memory

— Hot tree can use memory-optimized structures
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Record Migration

Migration of a record = insertion to a tree and/or deletion from a tree
— The tree structure is adjusted accordingly

Downward migration
— Clock replacement to find eviction candidate

Upward migration
— Probabilistic with a sampling rate D (0 < D < 1)

Inclusive versus exclusive

— Removal from bottom tree when inserting to the top tree?
— By default choose inclusive
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Two-Tree Operations

* Point lookup
— Search the top tree, if found, return
— Otherwise search the bottom tree
— Handle migration logic

» Update

— If found in top tree, set dirty bit, update record (record will be written back to
bottom tree during eviction)

— Otherwise update in the bottom tree
— Handle migration logic

37



Two-Tree Operations

* Insert
— Perform Lookup, if does not exist, insert to top tree and set dirty bit

* Delete
— Search top tree, if found, set delete bit
— Otherwise insert placeholder record: empty payload + delete bit set
— Delete applied to bottom tree when the record is evicted

* Range scan
— Scan both trees
— If a record exists in both trees, use the one in the top tree
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Durablility and Recovery

System transactions for record migration
— Lightweight, do not force log record to storage

Discussion question: do we need to log for migration at all?
— Two physical trees representing a single logical tree
— Maybe sufficient to recover only the logical tree
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Evaluation — 1-Tree vs. 2-Tree
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Figure 7: Throughput of 2B+tree and Single B+tree on Hotspot Re-
quest Distribution with Varying Working Set Size.

Benefits of 2-tree design
— More hot records can be cached



Evaluation — Top-Tree Implementation

—e— Anti-Caching —¥— Trie+B+tree —e— Anti-Caching —¥— Trie+B+tree
IM-2B+tree IM-2B+tree

15K — 15K

5000 = 5000 -
-— 1 1 | I ~— I I I I

0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
Skew Factor Skew Factor

(a) Read-Only (b) Update

Throughput (op/s)
Throughput (op/s)

Figure 12: Throughput for 2-TREE Variations and Anti-Caching on
Zipfian Request Distribution

Memory-optimized top-tree leads to better performance
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Discussion

2-Tree might perform worse than 1-Tree for the following operations:
— Scan: always need to scan bottom tree
— Negative lookup: always need to search bottom tree

42



Q/A — Transaction Buffer Management

Adaptive and learning-based promotion?

Why sampling-based upward migration? Better alternatives?
Scale to multiple threads?

High migration cost when hot set changes rapidly?

Scale to a distributed, sharded environment?

Extend to non-tree structures (hash table)?
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Submit review for

Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent

Operations on B-Trees. ACM Transactions on Database Systems,
1981
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