
Xiangyao Yu

10/16/2025

CS 764: Topics in Database Management Systems

Lecture 13: Transaction Buffer Management

1

Today’s Papers: LeanStore and Two-Tree

ICDE 2018
2

CIDR 2023

Agenda

3

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Two-Tree

Conventional DB Architecture

Page granularity: Data managed in
page granularity

Indirection: Use page ID to lookup
hash table to locate a page

4

CPU

Disk
Page

Frame

Memory

…

Frame Frame

hash

table

Conventional DB Performance

Only a small fraction of instructions
execute useful work

Significant instruction count
dedicated to buffer management

5[1] Stavros Harizopoulos, et al., OLTP Through the Looking Glass, and What We Found There , SIGMOD 2008

Main-Memory DB Architecture

6

CPU

Disk
Page

Frame

Memory

…

Frame Frame

hash

table

CPU

Memory

…

Fine-granularity: Fine-grained (e.g.,
tuple-level) data management

No Indirection: reference data
following pointers

Main-Memory DB Architecture

7

CPU

Disk
Page

Frame

Memory

…

Frame Frame

hash

table

CPU

Memory

…

Fine-granularity: Fine-grained (e.g.,
tuple-level) data management

No Indirection: reference data
following pointers

 Focus of LeanStore

Agenda

8

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Two-Tree

Pointer Swizzling

9

Pointer Swizzling

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)

10

Pointer Swizzling

Pages that reside in main memory are directly referenced using
virtual memory addresses (i.e., pointers)

Swip: the 8-byte memory location referring to a page
11

Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple
swips

– All references must be identified and changed atomically if the page is
swizzled or unswizzled

12

swip 1

(swizzled)

swip 2

(unswizzled)

Pointer Swizzling Design Constraints

Challenge 1: concurrency problem if a page is referenced by multiple
swips

– All references must be identified and changed atomically if the page is
swizzled or unswizzled

Solution: each page has a single owning swip
– In-memory data structures must be trees or forests

13

swip 1

(swizzled)

swip 2

(unswizzled)

Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

– The pointers would not make sense if the system restarts

14

swizzled

unswizzled

Pointer Swizzling Design Constraints

Challenge 2: pages containing memory pointers should not be
written to disk

– The pointers would not make sense if the system restarts

Solution: Never unswizzle a page that has swizzled children

15

swizzled

unswizzled

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

16

swizzled

unswizzledswizzled

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

17

swizzled

unswizzledswizzled

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

Must be able to identify parent swip
(to update parent pointer when unswizzling)

18

swizzled

unswizzledswizzled

parent

pointer

Pointer Swizzling Design Constraints

Constraint 1: each page has a single owning swip

Constraint 2: Never unswizzle a page that has swizzled children

Must be able to iterate over all swips on a page

Must be able to identify parent swip

19

For example: B+-trees cannot have

link pointer

Agenda

20

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Two-Tree

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU

21

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU

22

1

0

01

1

0

1 1

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU

23

1

0

01

1

0

1 1

Look for page to replace

If the bit = 0: evict

If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

Page Replacement Background

Least Recent Used (LRU)

Clock replacement (aka second chance)
– An approximation of LRU

24

1

0

01

1

0

1 1

Look for page to replace

If the bit = 0: evict

If the bit = 1: set to 0 and move to next entry

When a page is accessed, set bit to 1

Updating tracking information for each

page access is too expensive

Page Replacement — Cooling

Randomly add pages to cooling stage
– Cooling pages are unswizzled but not

replaced

– Cooling pages enter a FIFO queue; a
page is replaced if it reaches the end of
the queue

– Upon an access, a cooling page is
swizzled

25

Agenda

26

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Two-Tree

Latching is Expensive

27

Lock Coupling

28

Optimistic Lock Coupling

29

Agenda

30

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Experiments

Fine-grained in-memory data management

Experiments

31

Agenda

32

Main-memory DB

LeanStore design

– Pointer swizzling

– Page replacement

– Optimistic latching

Two-Tree

Main-Memory DB Architecture

33

CPU

Disk
Page

Frame

Memory

…

Frame Frame

hash

table

CPU

Memory

…

Fine-granularity: Fine-grained (e.g.,
tuple-level) data management

No Indirection: reference data
following pointers

CPU

Fine-Grained Buffer Management

Data is often skewed
– Few hot records and many cold

records in a page

– Inefficient memory usage and IO

Idea: cache data in record
granularity

Challenges:
– Buffer management

34

Disk
Page

Memory

…
Hot

record in

page

Two-Tree Architecture

A logical tree is implemented as two physical
trees, each with its own buffer management

Move data between trees at record
granularity

Different trees can be optimized
independently

– Hot tree can fit in memory

– Hot tree can use memory-optimized structures

35

Hot B-tree

Storage

Buffer Pool
…

Cold B-tree

Record Migration

Record Migration

Migration of a record = insertion to a tree and/or deletion from a tree
– The tree structure is adjusted accordingly

Downward migration
– Clock replacement to find eviction candidate

Upward migration
– Probabilistic with a sampling rate D (0 < D ≤ 1)

Inclusive versus exclusive
– Removal from bottom tree when inserting to the top tree?

– By default choose inclusive

36

Two-Tree Operations

• Point lookup
– Search the top tree, if found, return

– Otherwise search the bottom tree

– Handle migration logic

• Update
– If found in top tree, set dirty bit, update record (record will be written back to

bottom tree during eviction)

– Otherwise update in the bottom tree

– Handle migration logic

37

Two-Tree Operations

• Insert
– Perform Lookup, if does not exist, insert to top tree and set dirty bit

• Delete
– Search top tree, if found, set delete bit

– Otherwise insert placeholder record: empty payload + delete bit set

– Delete applied to bottom tree when the record is evicted

• Range scan
– Scan both trees

– If a record exists in both trees, use the one in the top tree

38

Durability and Recovery

System transactions for record migration
– Lightweight, do not force log record to storage

Discussion question: do we need to log for migration at all?
– Two physical trees representing a single logical tree

– Maybe sufficient to recover only the logical tree

39

Evaluation — 1-Tree vs. 2-Tree

Benefits of 2-tree design
– More hot records can be cached

40

Evaluation — Top-Tree Implementation

41

Memory-optimized top-tree leads to better performance

Discussion

2-Tree might perform worse than 1-Tree for the following operations:
– Scan: always need to scan bottom tree

– Negative lookup: always need to search bottom tree

42

Q/A – Transaction Buffer Management

43

Adaptive and learning-based promotion?

Why sampling-based upward migration? Better alternatives?

Scale to multiple threads?

High migration cost when hot set changes rapidly?

Scale to a distributed, sharded environment?

Extend to non-tree structures (hash table)?

Next Lecture

Submit review for

Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent
Operations on B-Trees. ACM Transactions on Database Systems,
1981

44

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/blink.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/blink.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/blink.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/blink.pdf

	Slide 1
	Slide 2: Today’s Papers: LeanStore and Two-Tree
	Slide 3: Agenda
	Slide 4: Conventional DB Architecture
	Slide 5: Conventional DB Performance
	Slide 6: Main-Memory DB Architecture
	Slide 7: Main-Memory DB Architecture
	Slide 8: Agenda
	Slide 9: Pointer Swizzling
	Slide 10: Pointer Swizzling
	Slide 11: Pointer Swizzling
	Slide 12: Pointer Swizzling Design Constraints
	Slide 13: Pointer Swizzling Design Constraints
	Slide 14: Pointer Swizzling Design Constraints
	Slide 15: Pointer Swizzling Design Constraints
	Slide 16: Pointer Swizzling Design Constraints
	Slide 17: Pointer Swizzling Design Constraints
	Slide 18: Pointer Swizzling Design Constraints
	Slide 19: Pointer Swizzling Design Constraints
	Slide 20: Agenda
	Slide 21: Page Replacement Background
	Slide 22: Page Replacement Background
	Slide 23: Page Replacement Background
	Slide 24: Page Replacement Background
	Slide 25: Page Replacement — Cooling
	Slide 26: Agenda
	Slide 27: Latching is Expensive
	Slide 28: Lock Coupling
	Slide 29: Optimistic Lock Coupling
	Slide 30: Agenda
	Slide 31: Experiments
	Slide 32: Agenda
	Slide 33: Main-Memory DB Architecture
	Slide 34: Fine-Grained Buffer Management
	Slide 35: Two-Tree Architecture
	Slide 36: Record Migration
	Slide 37: Two-Tree Operations
	Slide 38: Two-Tree Operations
	Slide 39: Durability and Recovery
	Slide 40: Evaluation — 1-Tree vs. 2-Tree
	Slide 41: Evaluation — Top-Tree Implementation
	Slide 42: Discussion
	Slide 43: Q/A – Transaction Buffer Management
	Slide 44: Next Lecture

