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Today’s Paper: B-tree Locking

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN
Carnegie-Mellon University
and

S. BING YAOQ

Purdue University

The B-tree and its variants have been found to be highly useful (both theoretically and in practice)
for storing large amounts of information, especially on secondary storage devices. We examine the
problem of overcoming the inherent difficulty of concurrent operations on such structures, using a
practical storage model. A single additional “link” pointer in each node allows a process to easily
recover from tree modifications performed by other concurrent processes. Our solution compares
favorably with earlier solutions in that the locking scheme is simpler (no read-locks are used) and
only a (small) constant number of nodes are locked by any update process at any given time. An
informal correctness proof for our system is given.

Key Words and Phrases: database, data structures, B-tree, index organizations, concurrent algorithms,

concurrency controls, locking protocols, correctness, consistency, multiway search trees
CR Categories: 3.73, 3.74, 4.32, 4.33, 4.34, 5.24

1. INTRODUCTION

The B-tree [2] and its variants have been widely used in recent years as a data
structure for storing large files of information, especially on secondary storage
devices [7]. The guaranteed small (average) search, insertion, and deletion time
for these structures makes them quite appealing for database applications.

A topic of current interest in database design is the construction of databases
that can be manipulated concurrently and correctly by several processes. In this
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Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan
— Secondary index usually stores the primary key
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Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan
— Secondary index can also point to the record directly

Secondary Primary
index index
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Balanced tree data structure

» Data is sorted
« Supports: search, sequential scan, inserts, and deletes




B-tree

Balanced tree data structure

» Data is sorted
« Supports: search, sequential scan, inserts, and deletes

Properties

« Every node contains k to 2k keys (except root)
* All leaf nodes are at the same level
* kis typically large; a lookup traverses a small number of levels
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B-tree vs. B+ Tree vs. B* Tree

B-tree
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B-tree: data pointers stored in all nodes



B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree
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B-tree: data pointers stored in all nodes

B+ tree:

— Data pointers stored only in leaf nodes
— The leaf nodes are linked
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B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree B* tree
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/I‘ S a / ]
f8T If14‘16\ p8T If14 16x| p8T s 14 16{{
S A S R /o /
4 9 13 15 17 1 19 4—>9|>13->15—>17 19 4—>9|>13->15—>17 19

NS NS NSNS NN YY) YN N NN N N

B-tree: data pointers stored in all nodes

B+ tree:

— Data pointers stored only in leaf nodes
— The leaf nodes are linked

B* tree is a misused term in B-tree literature

— Typically means a variant of B+ tree in which each node is least 2/3 full
— In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values) 13



Insert Example

Assume k = 2 (at most 4 keys per node)

insert(9)

A <« read(x)

examine A; get ptr to y

A «read(y)

insert 9 into A; must split into A, B
put(B, y)

put(4, y)
Add to node x a pointer to node y'.

Xiolp o 915 4
Y 8 10 12 15

12 15
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Search Example

Assume k = 2 (at most 4 keys per node) /,. Ty s \\
Y 8 10 12 15
search(15)

1. C < read(x)

2,

3. examine C; get ptr to y

4,

5.

6.

7

8

9

10. C < read(y)

15



Concurrency Challenge

Assume k = 2 (at most 4 keys per node) v [p s e
Concurrent search and insert can cause / J \
prOblemS Y 8 10 12 15
(a)
search(15) insert(9)

1. C «read(x) X0 | p - p 10 @ 15 & -

g' examine C; get ptr to y A read(x) / \

4, } examine A; get ptr toy /

. A « read(y)

6. insert 9 into A; must split into A, B Y. | 8 9 10 Yo iz s

7. put(B, y)

8, put(4, y)

9. Add to node x a pointer to node y'.

10. C « read(y)
11. error: 15 not found!

16
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Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)
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Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

— Lock parent
— Access parent
— Lock child

— Release parent if child is safe

1.

lock node A

2. access node A

3.
4.
S.

©O© 00N

lock node B
unlock node A
access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5
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Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

— Lock parent
— Access parent
— Lock child

— Release parent if child is safe

What if the child is unsafe?

— One solution: split immediately if
child is unsafe

1.

lock node A

2. access node A

3.
4.
5.

©O© 00N

lock node B
unlock node A
access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5
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Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative
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Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative

Concurrency challenge: search may read wrong node due to split
— Lock coupling solution: guard split using a lock
— B'i"k tree solution: allow search to find the right node

22
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Blnk-Tree

[ 2 90 & 99 7>
/
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RN
[,u 48 » 51 o 51 4# 53 9 56 ¢ 56 e——w ---
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<Associated <Associated <Associoted <Associated
Information>| | Information> Information > information >

Feature 1: link pointer to next node at each level — Kkey idea
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Blnk-Tree

[ 2 90 & 99 7>
/
/1;25;35 » 40 o] » 2 47 9 62 & 99 —t—p )
|,.36,4o._}_.4,.4|,o47 » 51 ¢ 56 e 57 kﬁg.—l—-[m_{-:gg\o:l—rx
RN
[,u 48 » 51 o 51 4# 53 9 56 ¢ 56 e——w ---
Key:46 Key:5l Key:53 Key:56

<Associated <Associated <Associoted <Associated
Information>| | Information> Information > information >

Feature 1: link pointer to next node at each level — Kkey idea

Feature 2: high key for each node

25



Blink-Tree: Locks

Hold only a small number of locks at any time
Reads are not blocked by locks
_ocks prevent only multiple updates

26



B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)
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B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)
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Before split Step 1



B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)
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B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)
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Before split Step 1 Step 2



B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

—_— — f 1> —p 7ol
} S ) SN I\

wc Ra N Ry W Fom R
f ! . o

Before split Step 1 Step 2 Step 3

Q: What if another txn searches a key in b’ before step 3 finishes?



B'"k-Tree: Search Algorithm

May follow the link pointer to find a key

root .\ root .\

F ;10,@»—» F 5010 p 23 O—>

s

If search for Key=8 If search for Key=24




Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node) v [p s e
Concurrency problem is solved in B'"k tree / J \
y 8 10 12 15
(a)
search(15) insert(9)

;. C < read(x) X0 | p - p 10 @ 15 & -

3: examine C; get ptr to y A read(x) / \

4, } examine A; get ptr toy

o, A «read(y) /

g ;ﬁrgig;;ltoz‘-l; must split into A, B [ 8 9 10 I 12 15

8. put(4, y)

9. Add to node x a pointer to node y'.

10. C « read(y)
11. error: 15 not found!

33



Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Bk tree
High key indicates when to follow link pointer

search(15) insert(9)
1. € «read(x)
2. A « read(x)
3. examine C; get ptr to y
4, examine A; get ptr toy
5. A «read(y)
6 insert 9 into A; must split into A, B
7 put(B, y)
8 put(A, y)
9. Add to node x a pointer to node y'.

10. C « read(y)
H—error— 15 notfoundl

15 is found following the link pointer

oR V. RASN SLL I W
y: 8 10 12 15
(a)
- p 10 ¢ 15 a

L\

8 9 10 Xl 12 15
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Concurrent Insert & Insert

Before insert 14 Leaf node split Insert to parent node
root S U root e root e &
F | o 5910 ¢ 23 o> ‘F//:/5/'10,°§"_> F | o 50 109 14 ¢ 23 o
\‘ : B 8 B
1;,0 13I 171¥ 23\\‘ o> A A 1if13:14¢; of—> 1;,0 23; ol

Regular insert process
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Concurrent Insert & Insert

Before insert 14 Leaf node split Insert to parent node
root ‘ root .\ root .\
\ N N & 8
F 1 - - F |» 59109 23 o> F 50799 010 of—»| 11 014 ¢ 23 o] »

5910 ¢ 23 o A T29
//// \_ / ra // \
. B
129 139 179 23¢  of—> 129139140 o 175 239 o A 120139149 of—>] 179 23
LRI ) RS

During an insert, the parent node is split by another transaction
— Follow the link point to find the real parent node

— The transaction holds 3 locks in this scenario
36



Agenda

B-Tree Index
Lock coupling

Blink_tree

— Search
— Insert

Optimistic lock coupling (OLC)

37



Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

A~ W

O oo ~NO®

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

. lock node C

. unlock node B
. access node C
. unlock node C

Lock bit Version number
0
& 1. read version v3
v3 2. access node A

all

v5

w

. read version v7

4. validate version v3

a

O 00N

. access node B

. read version v5

. validate version v7
. access node C

. validate version v5

63
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Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

A~ W

©ooN®

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

lock node C

unlock node B
access node C
unlock node C

Lock bit

Version number

0

v3

all

v5

—

. read version v3
2. access node A

3. read version v7
4. validate version v3
. access node B

a

6. read version v5
7. validate version v7
8. access node C
9. validate version v5

63

No scalability bottleneck

— No write to shared
memory during
traversal

— Upon conflict, retry
from root

— Performance similar to
Blink tree

39



Evaluation

lookup insert
20 4
-.g method
o
'ﬁ ~&—~ no sync.
a .| =+ oL
O 101
s —=— lock coupling
gy —— - » i
0.
1 5 10 15 20 1 5 10 15 20

threads

Figure 3: Scalability on 10-core system for B-tree operations (100M values).

Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.
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Q/A — Blink Tree

Recovery protocol?

Scalability under heavy update workloads?

Repeated splits near the same region?

For high concurrency, contention on upper-level node still negligible?
Excessive link pointer chain-following in the worst case?

Extend to a distributed system?

41



Next Lecture

Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-

Memory Databases. ICDE, 2013

42


http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf
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