
Xiangyao Yu

10/21/2025

CS 764: Topics in Database Management Systems

Lecture 14: Blink Tree

1

Today’s Paper: B-tree Locking

ACM Trans. Database Syst. 1981 2

Agenda

3

B-Tree Index

Lock coupling

Blink-tree

– Search

– Insert

Optimistic lock coupling (OLC)

Agenda

4

B-Tree Index

Lock coupling

Blink-tree

– Search

– Insert

Optimistic lock coupling (OLC)

Index

5

Index: Accelerate data retrieval operations in a database table

– E.g., random lookup, range scan

Index

6

Index: Accelerate data retrieval operations in a database table

– E.g., random lookup, range scan

Primary

index

Data store

Index

7

Index: Accelerate data retrieval operations in a database table

– E.g., random lookup, range scan

– Secondary index usually stores the primary key

Primary

index

Data store

Secondary

index

Index

8

Index: Accelerate data retrieval operations in a database table

– E.g., random lookup, range scan

– Secondary index can also point to the record directly

Primary

index

Data store

Secondary

index

B-tree

9

Balanced tree data structure

• Data is sorted

• Supports: search, sequential scan, inserts, and deletes

B-tree

10

Balanced tree data structure

• Data is sorted

• Supports: search, sequential scan, inserts, and deletes

Properties

• Every node contains k to 2k keys (except root)

• All leaf nodes are at the same level

• k is typically large; a lookup traverses a small number of levels

B-tree vs. B+ Tree vs. B* Tree

11

B-tree: data pointers stored in all nodes

10

8 14 16

4 9 13 15 17 19

B-tree

B-tree vs. B+ Tree vs. B* Tree

12

B-tree: data pointers stored in all nodes

B+ tree:
– Data pointers stored only in leaf nodes

– The leaf nodes are linked

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

B-tree vs. B+ Tree vs. B* Tree

13

B-tree: data pointers stored in all nodes

B+ tree:
– Data pointers stored only in leaf nodes

– The leaf nodes are linked

B* tree is a misused term in B-tree literature
– Typically means a variant of B+ tree in which each node is least 2/3 full

– In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

10

8 14 16

4 9 13 15 17 19

B* tree

9 19

19

high key

Insert Example

Assume k = 2 (at most 4 keys per node)

14

Search Example

Assume k = 2 (at most 4 keys per node)

15

Concurrency Challenge

Assume k = 2 (at most 4 keys per node)

Concurrent search and insert can cause
problems

16

Agenda

17

B-Tree Index

Lock coupling

Blink-tree

– Search

– Insert

Optimistic lock coupling (OLC)

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

18

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)
– Lock parent

– Access parent

– Lock child

– Release parent if child is safe

19

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)
– Lock parent

– Access parent

– Lock child

– Release parent if child is safe

20

What if the child is unsafe?
– One solution: split immediately if

child is unsafe

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
is too conservative

21

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
is too conservative

Concurrency challenge: search may read wrong node due to split
– Lock coupling solution: guard split using a lock

– Blink tree solution: allow search to find the right node

22

Agenda

23

B-Tree Index

Lock coupling

Blink-tree

– Search

– Insert

Optimistic lock coupling (OLC)

Blink-Tree

24

Feature 1: link pointer to next node at each level key idea

Blink-Tree

25

Feature 1: link pointer to next node at each level

Feature 2: high key for each node

key idea

Blink-Tree: Locks

26

• Hold only a small number of locks at any time

• Reads are not blocked by locks

• Locks prevent only multiple updates

Blink-Tree: Insert Algorithm

27

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a’ and b’)

Before split

Blink-Tree: Insert Algorithm

28

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a’ and b’)

Before split Step 1

Blink-Tree: Insert Algorithm

29

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2

Blink-Tree: Insert Algorithm

30

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2 Step 3

Blink-Tree: Insert Algorithm

31

Insert to leaf if the leaf node if not full

Illustration of node split (node a is split into a’ and b’)

Q: What if another txn searches a key in b’ before step 3 finishes?

Before split Step 1 Step 2 Step 3

Blink-Tree: Search Algorithm

32

May follow the link pointer to find a key

5 10 23

root … …

F

If search for Key=8

5 10 23

root … …

F

If search for Key=24

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node)

Concurrency problem is solved in Blink tree

33

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node)

Concurrency problem is solved in Blink tree

High key indicates when to follow link pointer

34

15 is found following the link pointer

Concurrent Insert & Insert

Regular insert process

35

Before insert 14 Leaf node split

5 10 14 23

12 13 14

root … …

F

A 17 23
B

Insert to parent node

5 10 23

12 13 14

root … …

F

A 17 23
B

5 10 23

root … …

12 13 17 23

… … ……

F

Concurrent Insert & Insert

36

5 10 23

12 13 14

root … …

F

A 17 23
B

5 10 23

root … …

12 13 17 23

… … ……

Before insert 14

F

Leaf node split

5 7 9 10

12 13 14

root … …

F

A 17 23
B

11 14 23

During an insert, the parent node is split by another transaction
– Follow the link point to find the real parent node

– The transaction holds 3 locks in this scenario

Insert to parent node

Agenda

37

B-Tree Index

Lock coupling

Blink-tree

– Search

– Insert

Optimistic lock coupling (OLC)

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

38

Lock bit Version number

0 63

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

39

Lock bit Version number

0 63

No scalability bottleneck
– No write to shared

memory during
traversal

– Upon conflict, retry
from root

– Performance similar to
Blink tree

Evaluation

40
Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization

Method. IEEE Data Eng. Bull. 42 (2019): 73-84.

Q/A – Blink Tree

41

Recovery protocol?

Scalability under heavy update workloads?

Repeated splits near the same region?

For high concurrency, contention on upper-level node still negligible?

Excessive link pointer chain-following in the worst case?

Extend to a distributed system?

Next Lecture

Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-
Memory Databases. ICDE, 2013

42

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

	Slide 1
	Slide 2: Today’s Paper: B-tree Locking
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Index
	Slide 6: Index
	Slide 7: Index
	Slide 8: Index
	Slide 9: B-tree
	Slide 10: B-tree
	Slide 11: B-tree vs. B+ Tree vs. B* Tree
	Slide 12: B-tree vs. B+ Tree vs. B* Tree
	Slide 13: B-tree vs. B+ Tree vs. B* Tree
	Slide 14: Insert Example
	Slide 15: Search Example
	Slide 16: Concurrency Challenge
	Slide 17: Agenda
	Slide 18: Lock Coupling
	Slide 19: Lock Coupling
	Slide 20: Lock Coupling
	Slide 21: Limitation of Lock Coupling
	Slide 22: Limitation of Lock Coupling
	Slide 23: Agenda
	Slide 24: Blink-Tree
	Slide 25: Blink-Tree
	Slide 26: Blink-Tree: Locks
	Slide 27: Blink-Tree: Insert Algorithm
	Slide 28: Blink-Tree: Insert Algorithm
	Slide 29: Blink-Tree: Insert Algorithm
	Slide 30: Blink-Tree: Insert Algorithm
	Slide 31: Blink-Tree: Insert Algorithm
	Slide 32: Blink-Tree: Search Algorithm
	Slide 33: Concurrent Search & Insert
	Slide 34: Concurrent Search & Insert
	Slide 35: Concurrent Insert & Insert
	Slide 36: Concurrent Insert & Insert
	Slide 37: Agenda
	Slide 38: Optimistic Lock Coupling (OLC)
	Slide 39: Optimistic Lock Coupling (OLC)
	Slide 40: Evaluation
	Slide 41: Q/A – Blink Tree
	Slide 42: Next Lecture

