WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 14: Blink Tree

Xiangyao Yu
10/21/2025

Today’s Paper: B-tree Locking

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN
Carnegie-Mellon University
and

S. BING YAOQ

Purdue University

The B-tree and its variants have been found to be highly useful (both theoretically and in practice)
for storing large amounts of information, especially on secondary storage devices. We examine the
problem of overcoming the inherent difficulty of concurrent operations on such structures, using a
practical storage model. A single additional “link” pointer in each node allows a process to easily
recover from tree modifications performed by other concurrent processes. Our solution compares
favorably with earlier solutions in that the locking scheme is simpler (no read-locks are used) and
only a (small) constant number of nodes are locked by any update process at any given time. An
informal correctness proof for our system is given.

Key Words and Phrases: database, data structures, B-tree, index organizations, concurrent algorithms,

concurrency controls, locking protocols, correctness, consistency, multiway search trees
CR Categories: 3.73, 3.74, 4.32, 4.33, 4.34, 5.24

1. INTRODUCTION

The B-tree [2] and its variants have been widely used in recent years as a data
structure for storing large files of information, especially on secondary storage
devices [7]. The guaranteed small (average) search, insertion, and deletion time
for these structures makes them quite appealing for database applications.

A topic of current interest in database design is the construction of databases
that can be manipulated concurrently and correctly by several processes. In this

LAt

ACM Trans. Database Syst. 1981

Agenda

B-Tree Index
Lock coupling

Blink_tree

— Search
— Insert

Optimistic lock coupling (OLC)

Agenda

B-Tree Index
Lock coupling

Blink_tree

— Search
— Insert

Optimistic lock coupling (OLC)

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan

Primary
index

\ 4

Data store

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan
— Secondary index usually stores the primary key

Secondary Primary
index index

Data store

Index

Index: Accelerate data retrieval operations in a database table
— E.g., random lookup, range scan
— Secondary index can also point to the record directly

Secondary Primary
index index

\

|

Data store

B-tree

Balanced tree data structure

» Data is sorted
« Supports: search, sequential scan, inserts, and deletes

B-tree

Balanced tree data structure

» Data is sorted
« Supports: search, sequential scan, inserts, and deletes

Properties

« Every node contains k to 2k keys (except root)
* All leaf nodes are at the same level
* kis typically large; a lookup traverses a small number of levels

N

an e

B-tree vs. B+ Tree vs. B* Tree

B-tree

/I"qu
N
f8T If14‘16\

[N [

4 9 13 15 17 119

NS NS NSNS

B-tree: data pointers stored in all nodes

B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree
10 |e o] 10 e
/I‘\ e
f8T If14‘16\ p8T If14 16x|
S A A
4 9 13 15 17 | 19 4—>9|>13->15—>17 19

NS NS NSNS NSNS N NS

B-tree: data pointers stored in all nodes

B+ tree:

— Data pointers stored only in leaf nodes
— The leaf nodes are linked

12

B-tree vs. B+ Tree vs. B* Tree

B-tree B+ tree B* tree
10 |o| o] 10 e 10 |e
/I‘ S a /]
f8T If14‘16\ p8T If14 16x| p8T s 14 16{{
S A S R /o /
4 9 13 15 17 1 19 4—>9|>13->15—>17 19 4—>9|>13->15—>17 19

NS NS NSNS NN YY) YN N NN N N

B-tree: data pointers stored in all nodes

B+ tree:

— Data pointers stored only in leaf nodes
— The leaf nodes are linked

B* tree is a misused term in B-tree literature

— Typically means a variant of B+ tree in which each node is least 2/3 full
— In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values) 13

Insert Example

Assume k = 2 (at most 4 keys per node)

insert(9)

A <« read(x)

examine A; get ptr to y

A «read(y)

insert 9 into A; must split into A, B
put(B, y)

put(4, y)
Add to node x a pointer to node y'.

Xiolp o 915 4
Y 8 10 12 15

12 15

14

Search Example

Assume k = 2 (at most 4 keys per node) /,. Ty s \\
Y 8 10 12 15
search(15)

1. C < read(x)

2,

3. examine C; get ptr to y

4,

5.

6.

7

8

9

10. C < read(y)

15

Concurrency Challenge

Assume k = 2 (at most 4 keys per node) v [p s e
Concurrent search and insert can cause / J \
prOblemS Y 8 10 12 15
(a)
search(15) insert(9)

1. C «read(x) X0 | p - p 10 @ 15 & -

g' examine C; get ptr to y A read(x) / \

4, } examine A; get ptr toy /

. A « read(y)

6. insert 9 into A; must split into A, B Y. | 8 9 10 Yo iz s

7. put(B, y)

8, put(4, y)

9. Add to node x a pointer to node y'.

10. C « read(y)
11. error: 15 not found!

16

Agenda

B-Tree Index
Lock coupling

Blink_tree

— Search
— Insert

Optimistic lock coupling (OLC)

17

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

18

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

— Lock parent
— Access parent
— Lock child

— Release parent if child is safe

1.

lock node A

2. access node A

3.
4.
S.

©O© 00N

lock node B
unlock node A
access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

19

Lock Coupling

A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

Lock coupling (aka. lock crabbing)

— Lock parent
— Access parent
— Lock child

— Release parent if child is safe

What if the child is unsafe?

— One solution: split immediately if
child is unsafe

1.

lock node A

2. access node A

3.
4.
5.

©O© 00N

lock node B
unlock node A
access node B

. lock node C

. unlock node B
. access node C
. unlock node C

v3

v7

v5

20

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative

21

Limitation of Lock Coupling

The root is locked for every index access and becomes a scalability
bottleneck

Observation: root and upper levels are rarely changed; lock coupling
IS too conservative

Concurrency challenge: search may read wrong node due to split
— Lock coupling solution: guard split using a lock
— B'i"k tree solution: allow search to find the right node

22

Agenda

B-Tree Index
Lock coupling

Blink-tree

— Search
— Insert

Optimistic lock coupling (OLC)

23

Blnk-Tree

[2 90 & 99 7>
/
/1;25;35 » 40 o] » 2 47 9 62 & 99 —t—p)
|,.36,4o._}_.4,.4|,o47 » 51 ¢ 56 e 57 kﬁg.—l—-[m_{-:gg\o:l—rx
RN
[,u 48 » 51 o 51 4# 53 9 56 ¢ 56 e——w ---
Key:46 Key:5l Key:53 Key:56

<Associated <Associated <Associoted <Associated
Information>| | Information> Information > information >

Feature 1: link pointer to next node at each level — Kkey idea

24

Blnk-Tree

[2 90 & 99 7>
/
/1;25;35 » 40 o] » 2 47 9 62 & 99 —t—p)
|,.36,4o._}_.4,.4|,o47 » 51 ¢ 56 e 57 kﬁg.—l—-[m_{-:gg\o:l—rx
RN
[,u 48 » 51 o 51 4# 53 9 56 ¢ 56 e——w ---
Key:46 Key:5l Key:53 Key:56

<Associated <Associated <Associoted <Associated
Information>| | Information> Information > information >

Feature 1: link pointer to next node at each level — Kkey idea

Feature 2: high key for each node

25

Blink-Tree: Locks

Hold only a small number of locks at any time
Reads are not blocked by locks
_ocks prevent only multiple updates

26

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

— 7

R
) S

REpRE

t

Before split

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

— 1 — >

» o y o

R RE T Rz B
' /

Before split Step 1

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

> —_— —» feol»

N N —
) .) S 28

wc Ra N Ry W Fom R
f ! . o

Before split Step 1 Step 2

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

— 1 — > — el
) S) S 2 8

wc Ra N Ry W Fom R
f ! . Fd

Before split Step 1 Step 2

B'"k-Tree: Insert Algorithm

Insert to leaf if the leaf node if not full
lllustration of node split (node a is split into a’and b’)

—_— — f 1> —p 7ol
} S) SN I\

wc Ra N Ry W Fom R
f ! . o

Before split Step 1 Step 2 Step 3

Q: What if another txn searches a key in b’ before step 3 finishes?

B'"k-Tree: Search Algorithm

May follow the link pointer to find a key

root .\ root .\

F ;10,@»—» F 5010 p 23 O—>

s

If search for Key=8 If search for Key=24

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node) v [p s e
Concurrency problem is solved in B'"k tree / J \
y 8 10 12 15
(a)
search(15) insert(9)

;. C < read(x) X0 | p - p 10 @ 15 & -

3: examine C; get ptr to y A read(x) / \

4, } examine A; get ptr toy

o, A «read(y) /

g ;ﬁrgig;;ltoz‘-l; must split into A, B [8 9 10 I 12 15

8. put(4, y)

9. Add to node x a pointer to node y'.

10. C « read(y)
11. error: 15 not found!

33

Concurrent Search & Insert

Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Bk tree
High key indicates when to follow link pointer

search(15) insert(9)
1. € «read(x)
2. A « read(x)
3. examine C; get ptr to y
4, examine A; get ptr toy
5. A «read(y)
6 insert 9 into A; must split into A, B
7 put(B, y)
8 put(A, y)
9. Add to node x a pointer to node y'.

10. C « read(y)
H—error— 15 notfoundl

15 is found following the link pointer

oR V. RASN SLL I W
y: 8 10 12 15
(a)
- p 10 ¢ 15 a

L\

8 9 10 Xl 12 15

34

Concurrent Insert & Insert

Before insert 14 Leaf node split Insert to parent node
root S U root e root e &
F | o 5910 ¢ 23 o> ‘F//:/5/'10,°§"_> F | o 50 109 14 ¢ 23 o
\‘ : B 8 B
1;,0 13I 171¥ 23\\‘ o> A A 1if13:14¢; of—> 1;,0 23; ol

Regular insert process

35

Concurrent Insert & Insert

Before insert 14 Leaf node split Insert to parent node
root ‘ root .\ root .\
\ N N & 8
F 1 - - F |» 59109 23 o> F 50799 010 of—»| 11 014 ¢ 23 o] »

5910 ¢ 23 o A T29
//// _ / ra // \
. B
129 139 179 23¢ of—> 129139140 o 175 239 o A 120139149 of—>] 179 23
LRI) RS

During an insert, the parent node is split by another transaction
— Follow the link point to find the real parent node

— The transaction holds 3 locks in this scenario
36

Agenda

B-Tree Index
Lock coupling

Blink_tree

— Search
— Insert

Optimistic lock coupling (OLC)

37

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

A~ W

O oo ~NO®

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

. lock node C

. unlock node B
. access node C
. unlock node C

Lock bit Version number
0
& 1. read version v3
v3 2. access node A

all

v5

w

. read version v7

4. validate version v3

a

O 00N

. access node B

. read version v5

. validate version v7
. access node C

. validate version v5

63

38

Optimistic Lock Coupling (OLC)

Each tuple contains a 64-bit version counter

—

A~ W

©ooN®

. lock node A
. access node A

. lock node B
. unlock node A
. access node B

lock node C

unlock node B
access node C
unlock node C

Lock bit

Version number

0

v3

all

v5

—

. read version v3
2. access node A

3. read version v7
4. validate version v3
. access node B

a

6. read version v5
7. validate version v7
8. access node C
9. validate version v5

63

No scalability bottleneck

— No write to shared
memory during
traversal

— Upon conflict, retry
from root

— Performance similar to
Blink tree

39

Evaluation

lookup insert
20 4
-.g method
o
'ﬁ ~&—~ no sync.
a .| =+ oL
O 101
s —=— lock coupling
gy —— - » i
0.
1 5 10 15 20 1 5 10 15 20

threads

Figure 3: Scalability on 10-core system for B-tree operations (100M values).

Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.

40

Q/A — Blink Tree

Recovery protocol?

Scalability under heavy update workloads?

Repeated splits near the same region?

For high concurrency, contention on upper-level node still negligible?
Excessive link pointer chain-following in the worst case?

Extend to a distributed system?

41

Next Lecture

Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-

Memory Databases. ICDE, 2013

42

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

	Slide 1
	Slide 2: Today’s Paper: B-tree Locking
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Index
	Slide 6: Index
	Slide 7: Index
	Slide 8: Index
	Slide 9: B-tree
	Slide 10: B-tree
	Slide 11: B-tree vs. B+ Tree vs. B* Tree
	Slide 12: B-tree vs. B+ Tree vs. B* Tree
	Slide 13: B-tree vs. B+ Tree vs. B* Tree
	Slide 14: Insert Example
	Slide 15: Search Example
	Slide 16: Concurrency Challenge
	Slide 17: Agenda
	Slide 18: Lock Coupling
	Slide 19: Lock Coupling
	Slide 20: Lock Coupling
	Slide 21: Limitation of Lock Coupling
	Slide 22: Limitation of Lock Coupling
	Slide 23: Agenda
	Slide 24: Blink-Tree
	Slide 25: Blink-Tree
	Slide 26: Blink-Tree: Locks
	Slide 27: Blink-Tree: Insert Algorithm
	Slide 28: Blink-Tree: Insert Algorithm
	Slide 29: Blink-Tree: Insert Algorithm
	Slide 30: Blink-Tree: Insert Algorithm
	Slide 31: Blink-Tree: Insert Algorithm
	Slide 32: Blink-Tree: Search Algorithm
	Slide 33: Concurrent Search & Insert
	Slide 34: Concurrent Search & Insert
	Slide 35: Concurrent Insert & Insert
	Slide 36: Concurrent Insert & Insert
	Slide 37: Agenda
	Slide 38: Optimistic Lock Coupling (OLC)
	Slide 39: Optimistic Lock Coupling (OLC)
	Slide 40: Evaluation
	Slide 41: Q/A – Blink Tree
	Slide 42: Next Lecture

