
Xiangyao Yu

10/23/2025

CS 764: Topics in Database Management Systems

Lecture 15: Adaptive Radix Tree

1

Announcement

Midterm exam
– All papers before the exam are included

– Guest lectures are not included

– Nov. 4 (Tuesday) noon–Nov. 6 (Thursday) noon, central time

– The exam questions will be posted on Piazza (as a word document)

– Please use Piazza to ask questions privately

Suggested ways to submit your solutions:
– Directly type your solutions in this MS word document, or

– Print out the exam and submit a photocopy of your solutions, or

– Convert the exam into a pdf file and write your solutions on it

2

Today’s Paper: B-tree Locking

3ICDE 2013

Outline

B-tree vs. Trie

Adaptive Radix Tree
– Adaptive types

– Collapsing inner nodes

– Search and insert operations

Evaluation

4

B+ Tree Revisit

Modern indexes fit in main memory

Keys are stored in each level of the tree

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

5

10

8 14 16

4 9 13 15 17 19

B+ tree

Trie (aka. digital tree or prefix tree)

Path to leaf node represents key of the
leaf

Operation complexity is O(k) where k is
the length of the key

Keys are most often strings and each
node contains characters

6

Source: https://en.wikipedia.org/wiki/Radix_tree

https://en.wikipedia.org/wiki/Radix_tree

Static Radix Tree

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

7

First byte

Second byte

Third byte

Static Radix Tree

Example:

k = 32 bit keys

Consider the index space consumption to insert one key

Extra space ≈
𝒌

𝒔
 (# of levels) × 2s (node size per level)

8

First byte

Second byte

Third byte

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

Static Radix Tree

9

First byte

Second byte

Third byte

Large span

 => reduced height

 => exponential tree size

Span (s): The number of
bits within the key used to
determine the next child

An inner node is an array
of 2s pointers

Key Idea: Adaptive Radix Tree

10

Original Radix Tree

Key Idea: Adaptive Radix Tree

11

Original Radix Tree

Optimization 1: adaptive node type

Key idea: Use a small node type

when only a small number of

children pointers exist

Key Idea: Adaptive Radix Tree

12

Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type

Key Idea: Adaptive Radix Tree

13

Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type

In ART, Span = 8 bits

Inner Node Structure

14

Node4 and Node16

Node48

Node256
– 256 child pointers indexed with

partial key byte directly

– (Same as original radix tree)

– Used for 49–256 entries

Inner Node Structure

15

Node4 and Node16
– Store up to 4 (16) partial keys

and the corresponding pointers

– Partial keys are sorted

– Use SIMD instructions to
accelerate key search

Node48

Node256

Inner Node Structure

16

Node4 and Node16

Node48
– 256 entries indexed with partial

key byte directly

– Each entry stores a one-byte index
to a child pointer array

– Child pointer array contains 48
pointers to children nodes

Node256

Inner Node Structure

17

Node4 and Node16

Node48
– 256 entries indexed with partial

key byte directly

– Each entry stores a one-byte index
to a child pointer array

– Child pointer array contains 48
pointers to children nodes

Node256
Discussion Question

Q1: Is Node48 more space efficient compared to

Node4/16 layout?

Q2: What is the key advantage of Node48 layout?

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

– Inner nodes created only required to
distinguish at least two leaf nodes

– In the example, root can directly point
to leaf FOO, eliminating the two inner
nodes

– Requires the key to be stored at the
leaf or in the database

18

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

19

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

20

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

– Optimistic: child node stores only the
length of compressed partial key

21

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

– Pessimistic: child node stores the
compressed partial key

– Optimistic: child node stores only the
length of compressed partial key

– Hybrid: use constant vector to store
partial key, switch to optimistic
approach if the vector overflows

22

Search Algorithm

23

B, F

“OO”, D, L

Example: search for FOOD

Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

24

Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

25

Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

26

Node4: b(n) ≤ 52 * 2 – 52 = 52

Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

27

Node4: b(n) ≤ 52 * 2 – 52 = 52

Node16: b(n) ≤ 52 * 5 – 160 = 100

Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

28

Node4: b(n) ≤ 52 * 2 – 52 = 52

Node16: b(n) ≤ 52 * 5 – 160 = 100

Node48: b(n) ≤ 52 * 17 – 656 = 228

Node256: b(n) ≤ 52 * 49 – 2064 = 484

Discussion

Space consumption
– ART requires at most 52 bytes of memory to index a key

– Q: What if the key itself is larger than 52 bytes?

29

Discussion

Space consumption
– ART requires at most 52 bytes of memory to index a key

– Q: What if the key itself is larger than 52 bytes?

Binary comparable keys
– If only binary-comparable keys are used as keys of a radix tree, the data is

stored in sorted order and all operations that rely on this order can be
supported (e.g., range scan)

– For finite and totally ordered domains, always possible to transform values
to binary-comparable keys

30

Evaluation—Single-Threaded Lookup

31

Evaluation—Single-Threaded Insert

32

Evaluation—Single-Threaded Insert

33

Evaluation – More Baselines

34* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

Evaluation – Memory Usage

35* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

Q/A – Adaptive Radix Tree

36

Node type transition overhead for write-heavy workload?

Adaptive node selection threshold through learning/tuning?

How to make ART multi-threaded? Lock-free?

ART for persistent memory with durability?

Any real-world implementation?

– DuckDB: https://duckdb.org/2022/07/27/art-storage

https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage

Next Lecture

Jim Gray, et al., Granularity of Locks and Degrees of Consistency in a
Shared Data Base. Modelling in Data Base Management Systems,
1976

37

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf

	Slide 1
	Slide 2: Announcement
	Slide 3: Today’s Paper: B-tree Locking
	Slide 4: Outline
	Slide 5: B+ Tree Revisit
	Slide 6: Trie (aka. digital tree or prefix tree)
	Slide 7: Static Radix Tree
	Slide 8: Static Radix Tree
	Slide 9: Static Radix Tree
	Slide 10: Key Idea: Adaptive Radix Tree
	Slide 11: Key Idea: Adaptive Radix Tree
	Slide 12: Key Idea: Adaptive Radix Tree
	Slide 13: Key Idea: Adaptive Radix Tree
	Slide 14: Inner Node Structure
	Slide 15: Inner Node Structure
	Slide 16: Inner Node Structure
	Slide 17: Inner Node Structure
	Slide 18: Collapsing Inner Node
	Slide 19: Collapsing Inner Node
	Slide 20: Collapsing Inner Node
	Slide 21: Collapsing Inner Node
	Slide 22: Collapsing Inner Node
	Slide 23: Search Algorithm
	Slide 24: Space Consumption
	Slide 25: Space Consumption
	Slide 26: Space Consumption
	Slide 27: Space Consumption
	Slide 28: Space Consumption
	Slide 29: Discussion
	Slide 30: Discussion
	Slide 31: Evaluation—Single-Threaded Lookup
	Slide 32: Evaluation—Single-Threaded Insert
	Slide 33: Evaluation—Single-Threaded Insert
	Slide 34: Evaluation – More Baselines
	Slide 35: Evaluation – Memory Usage
	Slide 36: Q/A – Adaptive Radix Tree
	Slide 37: Next Lecture

