WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 15: Adaptive Radix Tree

Xiangyao Yu
10/23/2025

Announcement

Midterm exam
— All papers before the exam are included
— Guest lectures are not included
— Nov. 4 (Tuesday) noon—Nov. 6 (Thursday) noon, central time
— The exam questions will be posted on Piazza (as a word document)
— Please use Piazza to ask questions privately

Suggested ways to submit your solutions:
— Directly type your solutions in this MS word document, or
— Print out the exam and submit a photocopy of your solutions, or
— Convert the exam into a pdf file and write your solutions on it

Today’s Paper: B-tree Locking

The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases

Viktor Leis, Alfons Kemper, Thomas Neumann
Fakuldr fiir Informarik
Technische Universitir Miinchen

Boltzmannstrae 3, D-85748 Garching
<lastname>@in.tum.de

Abstract—Main memory capacities have grown up to a point
where most databases fit into RAM. For main-memory database
systems, index structure performance is a critical bottleneck.
Traditional in-memory data structures like balanced binary
search trees are not efficient on modern hardware, because they
do not optimally utilize on-CPU caches. Hash tables, also often
used for main-memory indexes, are fast but only support point
queries.

To overcome these shortcomings, we present ART, an adaptive
radix tree (trie) for efficient indexing in main memory. Its lookup
performance surpasses highly tuned, read-only search trees, while
supporting very efficient insertions and deletions as well. At the
same time, ART is very space efficient and solves the problem
of excessive worst-case space consumption, which plagues most
radix trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though ART’s performance
is comparable to hash tables, it maintains the data in sorted
order, which enables additional operations like range scan and
prefix lookup.

1. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hardware landscape and are therefore much faster. Our
system HyPer, for example, compiles transactions to machine
code and gets rid of buffer management, locking, and latching
overhead. For OLTP workloads, the resulting execution plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B -tree
variants like the cache sensitive B -tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B -trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,

ICDE 2013

digit 1
A
digit 2
R
digit 3
D, T Y E T
leaf nodes

Fig. 1. Adaptively sized nodes in our radix tree.

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).

These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)
mechanism, which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(logn) access
time, hash tables have expected (J(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.

Outline

B-tree vs. Trie

Adaptive Radix Tree
— Adaptive types
— Collapsing inner nodes
— Search and insert operations

Evaluation

B+ Tree Revisit

Modern indexes fit in main memory
Keys are stored in each level of the tree

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

B+ tree

10

14

16

¥~

—

19

/
<

s

Trie (aka. digital tree or prefix tree)

Path to leaf node represents key of the
leaf

Operation complexity is O(k) where k is
the length of the key

Keys are most often strings and each
node contains characters

1 romane
2 romanus
3 romulus
4 rubens
5 ruber

& rubicon

o

om

s

7 rubicundus .
— T
F
&

|

#

®

oL
@ @

Source: https://en.wikipedia.org/wiki/Radix_tree

|ns

r
]

onl

andus

@ ® ® O

https://en.wikipedia.org/wiki/Radix_tree

Static Radix Tree

Span (s): The number of
bits within the key used to
determine the next child

An inner node Iis an array
of 2% pointers

First byte
Second byte

Y

[
e

/o]

)
VL N\

Third byte (

/

!

!

J
\

[)
FT T VT

Static Radix Tree

Span (s): The number of First byte /[,/ 77T VN L
bits within the key used to Second byte | |)
determine the next child Third byte | L N

))
An inner node is an array 2R S R

of 2% pointers

Example:
kK =32 bit keys
Consider the index space consumption to insert one key

Extra space = [ﬂ (# of levels) x 2% (node size per level)

Static Radix Tree

Span (s): The number of First byte /[,/ 77T VN L

bits within the key used to Second byte

()
determine the next child | o LN T
Third byte ())
V ! ! A R T R R A

An inner node Iis an array

of 2% pointers .
32= 0
£ 24 -
2 §=2
Qo 16— @
Large span £ & ErT s
_ 8 = ® .I_R)T(s=6) s=125_14
=> reduced height AR PP e §s00
=> exponential tree size B opace consumption (log scale)

Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.

Key Idea: Adaptive Radix Tree

/\

7 71
A

i

Original Radix Tree

Key Idea: Adaptive Radix Tree

/\

7 71
A

i

Original Radix Tree

/ A0

Optimization 1: adaptive node type

Key idea: Use a small node type
when only a small number of
children pointers exist

11

Key Idea: Adaptive Radix Tree

/

\

7 71
A

i

Original Radix Tree

/ A0

Optimization 1: adaptive node type

/

{ A0

Optimization 2: collapsing inner nodes
12

Key Idea: Adaptive Radix Tree

/

\

7 71
A

i

Original Radix Tree

In ART, Span = 8 bits

/ A0

Optimization 1: adaptive node type

/

{ A0

Optimization 2: collapsing inner nodes
13

Inner Node Structure

Node4 and Node16 Node256 Hloxe \
0 2 3 255
Node48 | | | |
i 3 i
Node256 A A A A

— 256 child pointers indexed with
partial key byte directly

— (Same as original radix tree)
— Used for 49-256 entries

14

Inner Node Structure

Node4 and Node16 [S o
— Store up to 4 (16) partial keys 0|23 pss| | | | |
and the corresponding pointers ! v ! !
— Partial keys are sorted A A\ /c\ A
— Use SIMD instructions to Node16 key child pointer
accelerate key search T o 5 - 5
Node48 e |
Node256 AN VAN \

15

Inner Node Structure

Node4 and Node16 Node4d oM inses child pinter
01 2 e
Node48 B m?j”%”mﬂl 1 . 1
— 256 entries indexed with partial T e
key byte directly A A /:\ A

— Each entry stores a one-byte index
to a child pointer array

— Child pointer array contains 48
pointers to children nodes

Node256

Inner Node Structure

Node4 and Node16 Node4d oM inses child pinter
01 2 N e
Node48 B “;jw%ymﬂl 1 1
— 256 entries indexed with partial s
key byte directly A A /:\ @

— Each entry stores a one-byte index
to a child pointer array

— Child pointer array contains 48
pointers to children nodes

Node256

Discussion Question
Q1: Is Node48 more space efficient compared to

Node4/16 layout?
Q2: What is the key advantage of Node48 layout?

17

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

— Inner nodes created only required to
distinguish at least two leaf nodes

— In the example, root can directly point
to leaf FOQ, eliminating the two inner
nodes

— Requires the key to be stored at the
leaf or in the database

nd®
....
.
w

Fig. 6.

[lustration of lazy expansion and path compression.

+path compression
. merge one-way node . o .
into child node ~ “wpret-- . Iazy. .
"""""""""""" A : O expansion ;
. remove path :
" to single leaf N
“'-... .Q l"'«

n #

18

Collapsing Inner Node

Lazy expansion: remove path to R
Slngle Ieaf ------------------------------------ P

-"path compression
. e into chitd node + Seeperte lazy .
Path compression: merge one-way = " dnoce 9 z' [%2 expansion '
node into child node tosingle leaf
— Removes all inner nodes that have R Z R Mo S
only a single child BAR

Fig. 6. [Illustration of lazy expansion and path compression.

19

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

— Removes all inner nodes that have
only a single child

— Pessimistic: child node stores the
compressed partial key

R
....
.
w

Fig. 6.

[lustration of lazy expansion and path compression.

n #

+path compression
" merge one-way node I o .
into child node ~ “wpret-- . Iazy. .
"""""""""""" A : O expansion
. remove path :
’ to single leaf N
"".l.. .Q l"'i

20

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node

— Removes all inner nodes that have
only a single child

— Pessimistic: child node stores the
compressed partial key

— Optimistic: child node stores only the
length of compressed partial key

R
....
.
w

Fig. 6.

[lustration of lazy expansion and path compression.

n #

+path compression
. merge one-way node . o .
into child node ~ “wpret-- . Iazy. .
"""""""""""" A : O expansion ;
. remove path :
" to single leaf N
“'-... .Q l"'«

21

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

Path compression: merge one-way
node into child node
— Removes all inner nodes that have
only a single child

— Pessimistic: child node stores the
compressed partial key

— Optimistic: child node stores only the
length of compressed partial key

— Hybrid: use constant vector to store
partial key, switch to optimistic
approach if the vector overflows

- 'path compression

., merge one-way node o o "
AL into child node St " Iazy.
.......................... A : O expansion
g remove path :
' to single leaf N

R Z T Ko R
BAR

Fig. 6. [Illustration of lazy expansion and path compression.

22

ose =1 v Lh s Ll R e

—_— =
_—

Search Algorithm

search (node, key, depth)
if node==NULL
return NULL
if isleaf (node)
if leafMatches(node, key, depth)
return node
return NULL
if checkPrefix (node, key,depth) !=node.prefixlLen
return NULL
depth=depth+node.prefixlLen
next=findChild (node, key|[depth])
return search (next, key, depth+l)

Fig. 7. Search algorithm.

B, F

N
“‘O0”, D, L

\

Example: search for FOOD

23

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

24

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

isLeaf(n)

= {(Zir&c(n) b(?’)) —s(n), else. / A\

25

Space Consumption

ART requires at most 52 bytes of memory to index a key
— Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

: T, isLeaf(n)
(n) = (ZiEC(n) b(z)) — s(n), else. ey,
Node4: b(n) < 52 * 2 — 52 = 52 /17 ‘ 4
Type Children Space (bytes)
Node4 2-4 16 +4+4-8 =052
Nodelb6 5-16 16 +16 + 16 - 8 = 160
Node438 17-48 | 16 + 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

26

Space Consumption

ART requires at most 52 bytes of memory to index a key
— Assume each child node has 52 byte budget, show that each node will have

at least 52 bytes budget remain

b(n) T, isLeaf(n)
n) =
(ZiEC(n) b(z)) — s(n), else. ey,
/
Node4: b(n) €52 * 2 — 52 = 52 avd ‘ /|
Node16: b(n) <52 * 5 — 160 = 100 Tvpe S Soace (bytes)
Node4 2-4 16 +4+4-8 =052
Nodelb6 5-16 16 +16 + 16 - 8 = 160
Node48 17-48 | 16 + 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

27

Space Consumption

ART requires at most 52 bytes of memory to index a key

— Assume each child node has 52 byte budget, show that each node will have
at least 52 bytes budget remain

b(n) — T, isLeaf(n)

(ZiEC(n) b(z)) — s(n), else. / / &

/
Node4: b(n) <52 *2—-52 =52 /\/x ‘ /x

Node16: b(n) <52 *5-160 =100 :

. _ Type Children Space (bytes)
Node48: b(n) < 52 37—656—228 Noded 54 64+ 4.8=52
Node256: b(n) =52 * 49 — 2064 =484 yodel6 5-16 | 16+ 16+ 16 -8 = 160
Node48 17-48 | 16 4 256 + 48 - 8 = 656
Node256 49-256 16 + 256 - 8 = 2064

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

29

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

Binary comparable keys

— If only binary-comparable keys are used as keys of a radix tree, the data is
stored in sorted order and all operations that rely on this order can be
supported (e.g., range scan)

— For finite and totally ordered domains, always possible to transform values
to binary-comparable keys

30

Evaluation—Single-Threaded Lookup

w

M lookups/second
w (o)}

65K
0= .dense
sparse
0_
) I I
o
1 1 1 1 1 1 1

ART GPT RB CSB kary FAST HT

M lookups/second

16M

20 =
.dense

15 = sparse
10 =
) I I I
ol o .

1 1 1 1 1

I I
ART GPT RB CSB kary FAST HT

M lookups/second

256M
10.0 =
. dense
75 = sparse
50 =
25 = I I
0.0 - -
1 1 1 1 1

ART

Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

RB kary FAST
(GPT and CSB crashed)

HT

31

Evaluation—Single-Threaded Insert

15 =
-g . dense
o] sparse
10 =
%)
t
Q
g 5+

0= |
I I I | I T
ART ART GPT RB CSB HT

(bulk) (bulk)

Fig. 14. Insertion of 16M keys into an empty index structure.

32

Evaluation—Single-Threaded Insert

20 =
o 15 - m 2 ART
c
S ense S 15 -
3 sparse 7]
© 10 = [
& G 10 = HT
) ©
2 5=)
= Qo 5=
s I I = FAST + A
0= | E _ —é— A__ Q
| | | | i 1 0 | 1 | i 1
ART ART GPT RB CSB HT 0% 259, 50% 75% 100%

(bulk) (bulk) update percentage

Fig. 14. Insertion of 16M keys into an empty index structure. Fig. 15. Mix of lookups, insertions, and deletions (16M keys).

Evaluation — More Baselines

E BwTree Il OpenBwTree B Skiplist T MassTree [~] B+Tree B ART

~J
o
~\l
o

140

l‘j- _—
S 1onl > ©60l - B .
8 120 = < 2 3 © 2
‘3100— _ o ‘250 ‘250_..
@] (@)
2 8o Q40 S 40|
3 60 330 - 330
.gn 40! 520 - 220+
g £ 10 g 10}
£ % £ £
0 Read 0 Read Read 0 Insert Read Read Scan
Only Only Update Insert Only Only Update Insert Only Only Update Insert
(a) Mono-Int Keys (b) Rand-Int Keys (c) Email Keys

Figure 14: In-Memory Index Comparison (Multi-Threaded) - 20 worker threads. All worker threads are pinned to NUMA node 0.

*Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018 34

Evaluation —

Memory Usage

| B BwTree

g O ~ 0

| Skiplist

|l OpenBwTree =1 B+Tree

0 MassTree |

@ ART

Memory (GB)
n

o = NN W

337

Mono Int

Rand Int
(b) Multi-Threaded — Read/Update

* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

35

Q/A — Adaptive Radix Tree

Node type transition overhead for write-heavy workload?
Adaptive node selection threshold through learning/tuning?
How to make ART multi-threaded? Lock-free?

ART for persistent memory with durability?

Any real-world implementation”?
— DuckDB: https://duckdb.org/2022/07/27/art-storage

36

https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage

Next Lecture

Jim Gray, et al., Granularity of Locks and Degrees of Consistency in a

Shared Data Base. Modelling in Data Base Management Systems,
1976

37

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf

	Slide 1
	Slide 2: Announcement
	Slide 3: Today’s Paper: B-tree Locking
	Slide 4: Outline
	Slide 5: B+ Tree Revisit
	Slide 6: Trie (aka. digital tree or prefix tree)
	Slide 7: Static Radix Tree
	Slide 8: Static Radix Tree
	Slide 9: Static Radix Tree
	Slide 10: Key Idea: Adaptive Radix Tree
	Slide 11: Key Idea: Adaptive Radix Tree
	Slide 12: Key Idea: Adaptive Radix Tree
	Slide 13: Key Idea: Adaptive Radix Tree
	Slide 14: Inner Node Structure
	Slide 15: Inner Node Structure
	Slide 16: Inner Node Structure
	Slide 17: Inner Node Structure
	Slide 18: Collapsing Inner Node
	Slide 19: Collapsing Inner Node
	Slide 20: Collapsing Inner Node
	Slide 21: Collapsing Inner Node
	Slide 22: Collapsing Inner Node
	Slide 23: Search Algorithm
	Slide 24: Space Consumption
	Slide 25: Space Consumption
	Slide 26: Space Consumption
	Slide 27: Space Consumption
	Slide 28: Space Consumption
	Slide 29: Discussion
	Slide 30: Discussion
	Slide 31: Evaluation—Single-Threaded Lookup
	Slide 32: Evaluation—Single-Threaded Insert
	Slide 33: Evaluation—Single-Threaded Insert
	Slide 34: Evaluation – More Baselines
	Slide 35: Evaluation – Memory Usage
	Slide 36: Q/A – Adaptive Radix Tree
	Slide 37: Next Lecture

