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Lecture 15: Adaptive Radix Tree
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Announcement 

Midterm exam
– All papers before the exam are included

– Guest lectures are not included 

– Nov. 4 (Tuesday) noon–Nov. 6 (Thursday) noon, central time

– The exam questions will be posted on Piazza (as a word document)

– Please use Piazza to ask questions privately

Suggested ways to submit your solutions: 
– Directly type your solutions in this MS word document, or  

– Print out the exam and submit a photocopy of your solutions, or

– Convert the exam into a pdf file and write your solutions on it 
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Today’s Paper: B-tree Locking

3ICDE 2013



Outline

B-tree vs. Trie 

Adaptive Radix Tree
– Adaptive types

– Collapsing inner nodes

– Search and insert operations

Evaluation 
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B+ Tree Revisit

Modern indexes fit in main memory 

Keys are stored in each level of the tree

Must always traverse to the leaf node to check 
existence (e.g., cannot stop at an inner node)
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Trie (aka. digital tree or prefix tree)

Path to leaf node represents key of the 
leaf

Operation complexity is O(k) where k is 
the length of the key 

Keys are most often strings and each 
node contains characters 
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Source: https://en.wikipedia.org/wiki/Radix_tree

https://en.wikipedia.org/wiki/Radix_tree


Static Radix Tree

Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 
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Third byte



Static Radix Tree

Example: 

k = 32 bit keys

Consider the index space consumption to insert one key

Extra space ≈ 
𝒌

𝒔
 (# of levels) × 2s (node size per level)
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First byte

Second byte

Third byte

Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 



Static Radix Tree
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First byte

Second byte

Third byte

Large span 

    => reduced height

    => exponential tree size 

Span (s): The number of 
bits within the key used to 
determine the next child

An inner node is an array 
of 2s pointers 



Key Idea: Adaptive Radix Tree
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Original Radix Tree



Key Idea: Adaptive Radix Tree

11

Original Radix Tree

Optimization 1: adaptive node type

Key idea: Use a small node type 

when only a small number of 

children pointers exist 



Key Idea: Adaptive Radix Tree
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Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type



Key Idea: Adaptive Radix Tree
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Optimization 2: collapsing inner nodes

Original Radix Tree

Optimization 1: adaptive node type

In ART, Span = 8 bits



Inner Node Structure
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Node4 and Node16

Node48

Node256
– 256 child pointers indexed with 

partial key byte directly

– (Same as original radix tree)

– Used for 49–256 entries



Inner Node Structure
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Node4 and Node16
– Store up to 4 (16) partial keys 

and the corresponding pointers

– Partial keys are sorted

– Use SIMD instructions to 
accelerate key search

Node48

Node256



Inner Node Structure
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Node4 and Node16

Node48
– 256 entries indexed with partial 

key byte directly

– Each entry stores a one-byte index 
to a child pointer array 

– Child pointer array contains 48 
pointers to children nodes

Node256



Inner Node Structure
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Node4 and Node16

Node48
– 256 entries indexed with partial 

key byte directly

– Each entry stores a one-byte index 
to a child pointer array 

– Child pointer array contains 48 
pointers to children nodes

Node256
Discussion Question 

Q1: Is Node48 more space efficient compared to 

Node4/16 layout? 

Q2: What is the key advantage of Node48 layout?



Collapsing Inner Node

Lazy expansion: remove path to 
single leaf

– Inner nodes created only required to 
distinguish at least two leaf nodes 

– In the example, root can directly point 
to leaf FOO, eliminating the two inner 
nodes

– Requires the key to be stored at the 
leaf or in the database 
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Collapsing Inner Node

Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child
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Collapsing Inner Node

Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 
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Collapsing Inner Node

Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 

– Optimistic: child node stores only the 
length of compressed partial key
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Collapsing Inner Node

Lazy expansion: remove path to 
single leaf

Path compression: merge one-way 
node into child node

– Removes all inner nodes that have 
only a single child

– Pessimistic: child node stores the 
compressed partial key 

– Optimistic: child node stores only the 
length of compressed partial key

– Hybrid: use constant vector to store 
partial key, switch to optimistic 
approach if the vector overflows
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Search Algorithm
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B, F

“OO”, D, L   

Example: search for FOOD



Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have 

at least 52 bytes budget remain
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Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have 

at least 52 bytes budget remain
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Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have 

at least 52 bytes budget remain
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Node4: b(n) ≤ 52 * 2 – 52 = 52 



Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have 

at least 52 bytes budget remain
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Node4: b(n) ≤ 52 * 2 – 52 = 52 

Node16: b(n) ≤ 52 * 5 – 160 = 100



Space Consumption

ART requires at most 52 bytes of memory to index a key
– Assume each child node has 52 byte budget, show that each node will have 

at least 52 bytes budget remain
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Node4: b(n) ≤ 52 * 2 – 52 = 52 

Node16: b(n) ≤ 52 * 5 – 160 = 100

Node48: b(n) ≤ 52 * 17 – 656 = 228

Node256: b(n) ≤ 52 * 49 – 2064 = 484 



Discussion

Space consumption
– ART requires at most 52 bytes of memory to index a key

– Q: What if the key itself is larger than 52 bytes?
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Discussion

Space consumption
– ART requires at most 52 bytes of memory to index a key

– Q: What if the key itself is larger than 52 bytes?

Binary comparable keys 
– If only binary-comparable keys are used as keys of a radix tree, the data is 

stored in sorted order and all operations that rely on this order can be 
supported (e.g., range scan) 

– For finite and totally ordered domains, always possible to transform values 
to binary-comparable keys 
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Evaluation—Single-Threaded Lookup
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Evaluation—Single-Threaded Insert
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Evaluation—Single-Threaded Insert
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Evaluation – More Baselines

34* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018



Evaluation – Memory Usage

35* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018



Q/A – Adaptive Radix Tree
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Node type transition overhead for write-heavy workload? 

Adaptive node selection threshold through learning/tuning? 

How to make ART multi-threaded? Lock-free? 

ART for persistent memory with durability? 

Any real-world implementation?

– DuckDB: https://duckdb.org/2022/07/27/art-storage

https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage
https://duckdb.org/2022/07/27/art-storage


Next Lecture

Jim Gray, et al., Granularity of Locks and Degrees of Consistency in a 
Shared Data Base. Modelling in Data Base Management Systems, 
1976
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https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/Granularity-of-Locks.pdf
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