WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 16: Granularity of Locks

Xiangyao Yu
10/28/2025

Today’s Paper: Granularity of Locks

‘Modelling in Data Base Management Systems, G.M. Nifssen, {ed.)
North Holland Publishing Company. 1976

Granularity of Locks and Degrees of Consistency
in a Shared Data Base

J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger

IBM Research laboratory
San Jose, California

The problem of choosing the appropriate granularity (size)
of lockable objects is introduced and the tradeoff between
concurrency and overhead is discussed. A locking protocol
vhich allows simultaneous locking at various granularities
by different tramsactions is presented. It is based on
the introduction of additional lock wmodes besides the
conventional share mods and sxclusiva mode. A proof is
given of the eguivalence of this protocol to a
conventional ona.

N2xt the issue of consistency in a shared environment is
analyzed. This discussion is motivated by the realization
that some existing data base systems use automatic lock
protocols which insure protection only from certain types
of inconsistencies (for instance those arising fron
transaction backup), thereby automatically providing a

limited degree of consistency. Four degrees of
consistency are introducad. They can be roughly
characterized as follows: degree 0 protects others from
your updates, degree 1 additionally provides protection

from losing updates, degree 2 =additionally provides
protection from reading incorrect data items, and degree 3
additionally provides protection from reading incorrect
relationships among data items (i.e. total protection). &
discussion follows on the relationships of the four
degrees to locking protocols, concurrency, overhead,
recovery and transaction structure.

Lastly, these ideas are compared with existing data
management systenms.

I. GRANULARITY OF LOCKS:
An ipportant issue which arises in the design of a data base
management system is the choice of lockable units, i.e. the data
aggregates which are atomically locked to insure consistency.
Examples of lockable units are areas, files, individual records,
field values, and intervals of fiela values.

The choice of lockable units presents a tradeoff between concurrency
and overhead, which is related to the size or granularity of the
units themselves. On.the one hand, concurrency is lncreased if a
fine lockable unit (for example a record or field) is chosen. Such
unit is appropriate for a ‘"simple" transaction which accesses few
records. On the other hand a fine unit of locking would be costly
for a "complex" transaction which accesses a large number ot
records. Such a transaction would have to set and reset a large

365

Modelling in Data Base Management Systems 1976

Agenda

Transaction basics
Locking granularity
Two-phase locking

Degree of consistency

Agenda

Transaction basics
Locking granularity
Two-phase locking

Degree of consistency

ACID Properties in Transactions

A sequence of many actions considered to be one atomic unit of work

Atomicity: Either all operations occur, or nothing occurs (all or nothing)
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave

Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and |

Agenda

Transaction basics
Locking granularity
Two-phase locking

Degree of consistency

Locking Granularity

Use locks to prevent conflicts

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity
— Entire database
— Relation
— Records ...

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity

— Entire database ,
Relat Increasing concurrency
— Relation Increasing overhead when many records are accessed

— Records ...

Goal: high concurrency and low cost

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity

— Entire database ,
Relat Increasing concurrency
— Relation Increasing overhead when many records are accessed

— Records ...

Goal: high concurrency and low cost

Solution: Hierarchical locks

10

Hierarchical Locks

DB DB
| |
Areas Areas
| / \
Files Files Indices
\
Reclords Records

Lock a high-level node if a large number of records are accessed
 All descendants are implicitly locked in the same mode

11

Hierarchical Locks

DB DB
| |
Areas Areas
| / \
Files Files Indices
\
Reclords Records

Lock a high-level node if a large number of records are accessed
 All descendants are implicitly locked in the same mode
* Intention lock to avoid conflict with implicit locks

12

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

13

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:
— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

14

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:

— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

Example: read record

DB IS

|
Areas IS

|
Files IS
ReCL)rds S

15

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:

— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy

— SIX: Read large portions and update a few parts

Example: read record update record
DB IS IX
Aréas IS IX
Filles IS IX
ReCL)rds S X

16

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:

— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy

— SIX: Read large portions and update a few parts

Example: read record update record scan + occasional updates
DB IS IX IX
Aréas IS IX IX
FilleS IS IX SIX
Recl)rds S X lock specific records in X mode

17

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database

Relation

N

Tuple A Tuple B

18

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database | X
Relation | X
S Tuple A Tuple B X

19

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database | X
Relation | X
S Tuple A Tuple B

NL

Database

Relation

N

IX

SIX

Tuple A Tuple B X

20

Lock Compatibility

Increasing lock strength —>

1S IX S SIX | X
1S Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

21

Lock Compatibility

Increasing lock strength —>

1S IX S SIX | X
1S Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

22

Rules for Lock Requests

» Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

23

Rules for Lock Requests

» Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

» Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

24

Rules for Lock Requests

» Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

» Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

» Locks requested root to leaf

» Locks released leaf to root or any order at the end of the
transaction

25

Extension — Semantic Locking

A system can introduce new
lock types based on the
operation semantics

26

Extension — Semantic Locking

Example: increment lock

S INC [X
S N N
INC [N N
X N N)\

A system can introduce new
lock types based on the
operation semantics

Example:

— Increment and decrement
values

27

Extension — Semantic Locking

Example: increment lock

S INC [X
S N N
INC [N N
X N N)\

Example: compare with constant

S |COMP X
S N
COMP depends
X N |depends N

A system can introduce new
lock types based on the
operation semantics

Example:

— Increment and decrement
values

— Test value is greater than V

28

Schedule and Granting Requests

Queue of requests
IS —IX—IS—IS—IS —S — [S— X — IS —IX

granted group waiting requests

To avoid starvation (where a transaction is delayed indefinitely), each
request waits its turn in the queue

29

Deadlock

tuple A
T1.S —T2.X

tuple B
T2.S —T1.X

T2 waits for T1

T1 waits for T2

30

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

— Maintain a waits-for graph and detect cycles

31

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

32

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts

— The waits-for graph is always a DAG

33

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts

Wound-Wait: On a conflict, the requesting transaction preemptively
aborts current owners if it has higher priority, otherwise the
requesting transaction waits

— The waits-for graph is always a DAG

34

Serializability

Concurrent execution of transactions produces the same results as
some serial execution

— Intuitive and easy to reason about

35

Agenda

Transaction basics
Locking granularity
Two-phase locking

Degree of consistency

36

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)

37

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)
— Serialization point: after all locks are acquired but before any release
— The equivalent serial order = order of transactions’ serialization points

38

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)
— Serialization point: after all locks are acquired but before any release
— The equivalent serial order = order of transactions’ serialization points

Strict 2PL: 2PL + all exclusive locks released after transaction
commits
— Widely used scheme in practice

39

Agenda

Transaction basics
Locking granularity
Two-phase locking

Degree of consistency

40

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

41

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

42

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1. Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

43

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1. Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

Degree O:
— Short write locks
— No read locks

44

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes [

Degree 2: Read Committed
— Two-phase with respect to writes

- Short read locks Increasing concurrency
Degree 1. Read Uncommitted

— Two-phase with respect to writes Weaker guarantees

— No read locks (may observe dirty data)
Degree O:

— Short write locks
— No read locks

Q/A — Granularity of Locks

* Contention because |X locks on all ancestor paths?

« Granularity of locks extended to distributed system??

* How to choose the right granularity in modern system?
* How does MVCC fit in the isolation framework?

* This theory used in practice

« SIX vs. separate S and X7

46

Before Next Lecture

H. T. Kung, John T. Robinson, On Optimistic Methods for
Concurrency Control. ACM Transactions on Database Systems, 1981

47

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/occ.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/occ.pdf

	Slide 1
	Slide 2: Today’s Paper: Granularity of Locks
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: ACID Properties in Transactions
	Slide 6: Agenda
	Slide 7: Locking Granularity
	Slide 8: Locking Granularity
	Slide 9: Locking Granularity
	Slide 10: Locking Granularity
	Slide 11: Hierarchical Locks
	Slide 12: Hierarchical Locks
	Slide 13: Locking Modes
	Slide 14: Locking Modes
	Slide 15: Locking Modes
	Slide 16: Locking Modes
	Slide 17: Locking Modes
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Lock Compatibility
	Slide 22: Lock Compatibility
	Slide 23: Rules for Lock Requests
	Slide 24: Rules for Lock Requests
	Slide 25: Rules for Lock Requests
	Slide 26: Extension – Semantic Locking
	Slide 27: Extension – Semantic Locking
	Slide 28: Extension – Semantic Locking
	Slide 29: Schedule and Granting Requests
	Slide 30: Deadlock
	Slide 31: Deadlocks Solutions
	Slide 32: Deadlocks Solutions
	Slide 33: Deadlocks Solutions
	Slide 34: Deadlocks Solutions
	Slide 35: Serializability
	Slide 36: Agenda
	Slide 37: Two-Phase Locking (2PL)
	Slide 38: Two-Phase Locking (2PL)
	Slide 39: Two-Phase Locking (2PL)
	Slide 40: Agenda
	Slide 41: Degree of Consistency (Isolation)
	Slide 42: Degree of Consistency (Isolation)
	Slide 43: Degree of Consistency (Isolation)
	Slide 44: Degree of Consistency (Isolation)
	Slide 45: Degree of Consistency (Isolation)
	Slide 46: Q/A – Granularity of Locks
	Slide 47: Before Next Lecture

