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Today’s Paper: Optimistic Concurrency Control

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.
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1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable,
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Speedy Transactions in Multicore In-Memory Databases

Stephen Tu, Wenting Zheng, Eddie Kohler', Barbara Liskov, and Samuel Madden
MIT CSAIL and ‘Harvard University

Abstract

Silo is a new in-memory database that achieves excel-
lent performance and scalability on modern multicore
machines. Silo was designed from the ground up to use
system memory and caches efficiently. For instance, it
avoids all centralized contention points, including that of
centralized transaction ID assignment. Silo’s key contri-
bution is a commit protocol based on optimistic concur-
rency control that provides serializability while avoid-
ing all shared-memory writes for records that were only
read. Though this might seem to complicate the en-
forcement of a serial order, correct logging and recov-
ery is provided by linking periodically-updated epochs
‘with the commit protocol. Silo provides the same guar-
antees as any serializable database without unnecessary
scalability bottlenecks or much additional latency. Silo
achieves almost 700,000 transactions per second on a
standard TPC-C workload mix on a 32-core machine, as
well as near-linear scalability. Considered per core, this
is several times higher than previously reported results.

1 Introduction

Thanks to drastic increases in main memory sizes and
processor core counts for server-class machines, modern
high-end servers can have several terabytes of RAM and
80 or more cores. When used effectively, this is enough
processing power and memory to handle data sets and
computations that used to be spread across many disks
and machines. However, harnassing this power is tricky;
even single points of contention, like compare-and-
swaps on a shared-memory word, can limit scalability.
This paper presents Silo, a new main-memory
database that achieves excellent performance on multi-
core machines. We designed Silo from the ground up
to use system memory and caches efficiently. We avoid
all centralized contention points and make all synchro-
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nization scale with the data, allowing larger databases to
Support more Concurrency.

Silo uses a Masstree-inspired tree structure for its un-
derlying indexes. Masstree [23] is a fast concurrent B-
tree-like structure optimized for multicore performance.
But Masstree only supports non-serializable, single-key
transactions, whereas any real database must support
transactions that affect multiple keys and occur in some
serial order. Our core result, the Silo commit protocol, is
a minimal-contention serializable commit protocol that
provides these properties.

Silo uses a variant of optimistic concurrency control
(OCC) [18]. An OCC transaction tracks the records it
reads and writes in thread-local storage. At commit time,
after validating that no concurrent transaction’s writes
overlapped with its read set, the transaction installs all
written records at once. If validation fails, the transaction
aborts. This approach has several benefits for scalability.
OCC writes to shared memory only at commit time, af-
ter the transaction’s compute phase has completed; this
short write period reduces contention. And thanks to the
validation step, read-set records need not be locked. This
matters because the memory writes required for read
locks can induce contention [11].

Previous OCC implementations are not free of scal-
ing bottlenecks, however, with a key reason being the re-
quirement for tracking “anti-dependencies” (write-after-
read conflicts). Consider a transaction r; that reads a
record from the database, and a concurrent transaction
2 that overwrites the value #; saw. A serializable sys-
tem must order #; before #» even after a potential crash
and recovery from persistent logs. To achieve this order-
ing, most systems require that 1y communicate with rs,
such as by posting its read sets to shared memory or via
a centrally-assigned, monotonically-increasing transac-
tion ID [18, 19]. Some non-serializable systems can
avoid this communication, but they suffer from anoma-
lies like snapshot isolation’s “write skew™ [2].

Silo provides serializability while avoiding ail shared-
memory writes for read transactions. The commit proto-
col was carefully designed using memory fences to scal-
ably produce results consistent with a serial order. This
leaves the problem of correct recovery, which we solve
using a form of epoch-based group commir. Time is di-
vided into a series of short epochs. Even though transac-
tion results always agree with a serial order, the system
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Concurrency Control

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly

Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Other common concurrency control protocols

— Timestamp ordering (T/O)
— Multi-version concurrency control (MVCC)
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Pessimistic Concurrency Control

Strict two-phase locking (2PL)
— Acquire the right type of locks before accessing data
— Release locks when the transaction commits

Downsides of pessimistic concurrency control
— Locking overhead, even for read-only transactions
— Deadlocks

— Limited concurrency due to (1) congestion and (2) holding locks till the end
of a transaction

Observation: Locking is needed only if contention exists; real
workloads have low contention
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Optimistic Concurrency Control (OCC)

Goal: eliminating pessimistic locking
Three executing phases:

— Read
— Validation read validation write
— Write \ \ /
\ \ /
- -+
» time

Fig. 1. The three phases of a transaction.
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Read Phase

n = tcreate
— Insert a new record

tereate = (
n .= create;
create set := create set U {n};
return n)

12



Read Phase

n = tcreate

twrite(n, i, v)
— Write to local write set
— No modification to the database

twrite(n, i, v) = (
if n € create set
then write(n, i, v)
else if n € write set
then write(copies[n], i, v)
else (
m = copy(n);
coptes|nl] = m;
write set := write set U {n};
write (coples[n|], t, v)))

13



Read Phase

n = tcreate
twrite(n, i, v)

value = tread(n, i)
— Read from either the local write set or the database

tread(n, i) = (
read set := read set U {n};
if n € write set
then return read(copies[n], t)
else
return read(n, t))

14



Read Phase

n = tcreate
twrite(n, i, v)
value = tread(n, i)

tdelete(n)

— Mark delete in local delete set
— No deletion from the database

tdelete(n) = (
delete set := delete set U {n}).

15



Read Phase

n = tcreate
twrite(n, i, v)
value = tread(n, i)
tdelete(n)

All changes (i.e., inserts, updates, deletes) are kept local to the
transaction without updating the database

16



Write Phase

All written values become “global”

for n € write set do exchange(n, copies[n]).

All created nodes become accessible
All deleted nodes become inaccessible

17



Validation Phase

A transaction j is assigned a transaction number £(i) when it enters the
validation phase

— Transaction number determines global serialization order

—1(i) <t(j) => exists a serial schedule where T, is before T;

— If execution does not obey this order, the validating transaction aborts

18



Serial Validation

tbegin = (
start tn := tnc) B .
tend = ( Critical Section

(finish tn = tnc;
valid := true;
for ¢t from start tn + 1 to finish in do

if (write set of transaction with transaction number t intersects read set)
then valid = false;
if valid
then ((write phase); tnc = tne + 1; tn == tnc));

it valid

then (cleanup)
else (backup)).

T, ——41
T, | 1

T, l —H
T, l ] —
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Serial Validation

tbegin = (
start tn := tnc)
tend = (

Critical Section

(finish tn = tnc;
valid := true;
for ¢t from start tn + 1 to finish in do

then valid = false;
if valid
then ((write phase); tnc = tne + 1; tn == tnc));

if (write set of transaction with transaction number t intersects read set)

it valid

then (cleanup)
else (backup)).

T, ——41
T, | 1

T, | 1
T, I ] ]

Which transactions will T2, T3,
and T4 be validated against?

20



Serial Validation

tbegin = (
start tn := tnc)

tend = ( Critical Section
(finish tn = tnc;

valid := true;

for ¢t from start tn + 1 to finish in do

if (write set of transaction with transaction number t intersects read set)
then valid = false;
if valid
then ((write phase); tnc = tne + 1; tn == tnc));
“1f valid

then (cleanup) Which transactions will T2, T3,
else (backup)).

and T4 be validated against?

T, | i —H Problem: Both validate and write

T, J i phases happen in the critical
T3 ! —H section

T, | | 1 21




Improved Serial Validation

tend = {
mid tn = tnc;
valid := true;

for ¢ from start tn + 1 to mid tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false:

(finish tn := tnc;
for ¢t from mid tn + 1 to finish itn do
if (write set of transaction with transaction number t intersects read set)
then valid .= false;

if valid
hen rite : = tne + 1: tn = }):

if valid . .
then (cleanup) Critical Section

else (backup)).

T, ——

Part of the validation process
happens outside the critical
section

The optimization can be
applied repeatedly

Readonly transactions do not
enter the critical section

22



Parallel Validation

tend = (

finish active := (make a copy of active);

intsh tn .= tnc; ‘
active := active U {id of this transaction});

valid .= true;
for ¢t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
for i € finish active do
if (write set of transaction T; intersects read set or write set)
then valid := false;
if valid

then ( | Critical Sections
write phase);

(tnc:=tnc + 1;

tn:=tnc;

active := active—{id of this transaction} 2;\

(cleanup))
else (

(active := active—{id of transaction}); |

(backup)}).

T, —+—1

Validation against other transactions
and writes both happen outside the
critical section

Length of the critical section is
independent of the number of
validating transactions

Leading to unnecessary aborts
— Abort due to conflict with an
aborted transaction




Parallel Validation

tend = (
(finish tn := tnc;
finish active := (make a copy of active);
active := active U {id of this transaction});
valid .= true;
for ¢t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects
then valid := false;
for : € finish active do
if (write set of transaction T; intersectsjread set or write set |
then valid := false;
if valid
then (
(write phase);
(tnc:=tnc + 1;
tn:=tnc;
active := active—{id of this transaction});
(cleanup))
else (
(active := active—{id of transaction});
(backup))).

Question: Why need to consider both
read set and write set when validating
against transactions in finish active?

24
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Timestamp Allocation Bottleneck

atomic fetch and add(&lsn, size); _ _
Even a single atomic

- 10M instruction can become a
2 gMm}| i « scalability bottleneck
-
E eM} -
g
5 M S

| _ ] [| =2 Atomic batch=
g M _5 1000? o o ﬁtomic batch=;6
— = [ Atomic

O | | | \Z, | e Utex
1 8 16 24 32 5 loopl— B
Worker threads s; . o;
lE 17 ‘ R ‘ e —
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Number of Cores

X.Yu et al. Staring into the Abyss: An Evaluation of Concurrency
Control with One Thousand Cores, VLDB 2014 27



Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits

Sequence number

Epoch number

0

63
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits

Sequence number

Epoch number

0

Each read returns consistent value and TID word

— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)

63
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Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits Sequence number Epoch number
0 63

Each read returns consistent value and TID word
— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)

// read a record
do
vl = t.read TID word()
RS[t.key] .data = t.data
v2 = t.read TID word()
while (vl != v2 or vl.lock bit == 1);



Silo Read Phase

Each tuple contains a 64-bit TID word

Status bits Sequence number

Epoch number

0

63

Each read returns consistent value and TID word
— Method 1: Guard the read with a latch (i.e., a short lock)
— Method 2: Optimistic lock (Silo’s approach)

// read a record
do
vl = t.read TID word()
RS[t.key] .data = t.data
v2 = t.read TID word()
while (vl != v2 or vl.lock bit == 1);

//
vl
vl
vl
vl

write a record
.lock bit =1
.update ()

.update seq number ()
.lock bit = 0



Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record € W)
then abort();
for node, versionin N do
if node.version #+ version then abort();
commit-tid < generate-tid(R, W, e);
// Phase 3
for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

32



Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record € W)
then abort();
for node, versionin N do
if node.version #+ version then abort();
commit-tid < generate-tid(R, W, e);
// Phase 3
for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Q: Why need to sort write set?

33



Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record € W)
then abort();

for node, versionin N do
if node.version #+ version then abort();

commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Phase 2: Validate the read set

— Validation fails if (1) the tuple is
modified since the earlier read or (2)
the tuple is locked by another
transaction

34



Silo Validation Phase

Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record € W)
then abort();

for node, versionin N do
if node.version #+ version then abort();

commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);

Phase 1: Lock the write set

Phase 2: Validate the read set

— Validation fails if (1) the tuple is
modified since the earlier read or (2)
the tuple is locked by another
transaction

Q: If a tuple is modified since a
transaction’s earlier read, can the
transaction still be serializable?
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Silo Validation Phase

Data: read set R, write set W, node set N, Phase 1 - LOCk the Write set
global epoch number E ]

// Phase 1

for record, new-value in sorted(W) do ‘
lock(record);

Phase 2: Validate the read set

compiler-fence();
e+ E; // serialization point
compiler-fence();

// Phase 2 Phase 3: Write phase

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record € W)
then abort();

for node, versionin N do
if node.version #+ version then abort();
commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);
unlock(record);




Silo OCC iIs Serializable

lock write set validate read set
| | | I
| | |
read(A) read(B) read(C) serialization write DB and release locks
point
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Silo OCC iIs Serializable

lock write set validate read set
| | | I
| | |
read(A) read(B) read(C) serialization write DB and release locks
point

Proof idea

— The Silo schedule is equivalent to an idealized schedule where all reads and
writes of a transaction occur at the serialization point

— (Same strategy can be used to prove that 2PL is serializable)

38



Silo vs. OCC 1981

// Phase 1 i
for record, new-value in sorted(W) do SI IO
lock(record);
compiler-fence();
e+ E, // serialization point
compiler-fence();
// Phase 2
for record, read-tid in R do
if record.tid # read-tid or not record.latest
or (record.locked and record ¢ W)
then abort();

tend = (

(finish tn .= tnc;

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;

if valid
then ((write phase); tnc ;= tne + 1; tn ;= tnc));

if valid
then (cleanup)
else (backup)).

OCC 1981
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Silo vs. OCC 1981

// Phase 1 i
for record, new-value in sorted(W) do SI IO
lock(record);
compiler-fence();
e+ E, // serialization point
compiler-fence();
// Phase 2
for record, read-tid in R do
if record.tid # read-tid or not record.latest
or (record.locked and record ¢ W)
then abort();

tend = (

(finish tn .= tnc;

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;

if valid
then ((write phase); tnc ;= tne + 1; tn ;= tnc));

if valid
then (cleanup)
else (backup)).

OCC 1981

 Silo locks tuples in write set; OCC’81 uses global critical

sections
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Silo vs. OCC 1981

// Phase 1 i
for record, new-value in sorted(W) do SI | o
lock(record);
compiler-fence();
e+ E, // serialization point
compiler-fence();
// Phase 2
for record, read-tid in R do
if record.tid # read-tid or not record.latest
or (record.locked and record ¢ W)
then abort();

tend = (

{finish tn = tnc; OCC 1 981

valid = true;

for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)

then valid := false;

if valid
then ((write phase); tnc = tne + 1; tn = tnc));

if valid
then (cleanup)
else (backup)).

 Silo locks tuples in write set; OCC’81 uses global critical

sections

* Silo validates using tuple versions; OCC’81 validates against write

set of previous transactions

41




2PL vs. OCC

Revisit the motivation of OCC:
— Locking overhead, even for read-only transactions
— Deadlocks

— Limited concurrency due to (1) congestion and (2) holding locks till the end
of a transaction

Comments:
— Optimized locks have low overhead, relative to disk and network cost
— When 2PL has limited concurrency, OCC may have high abort rate

42



Q/A - OCC

Modern approaches to solve starvation besides locking?
Long-running analytical transactions with massive read sets?
OCC compared to modern MVCC systems?

Choose between optimistic vs. pessimistic CC?

2PL vs. OCC under high contention?

OCC feasible in distributed system?

Hybrid OCC and 2PL?

43



Next Week—Midterm Exam
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