WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 2: Join

Xiangyao Yu
9/9/2025

Today's Paper: Join

Join Processing in Database Systems
with Large Main Memories

LEONARD D. SHAPIRO
North Dakota State University

We study algorithms for computing the equijoin of two relations in a system with a standard
architecture but with large amounts of main memory. OQur algorithms are especially efficient when
the main memory available is a significant fraction of the size of one of the relations to be joined;
but they can be applied whenever there is memory equal to approximately the square root of the size
of one relation, We present a new algorithm which is a hybrid of two hash-based algorithms and
which dominates the other algorithms we present, including sort-merge, Even in a virtual memory
environment, the hybrid algorithm dominates all the others we study.

Finally, we describe how three popular tools to increase the efficiency of joins, namely filters, Babb
arrays, and semijoins, can be grafted onto any of our algorithms,

Categories and Subject Descriptors: H.2.0 [Database Management]: General; H.2.4 [Database
Management): Systems—query processing; H.2.6 [Database Management): Database Machines

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hash join, join processing, large main memory, sort-merge join

ACM Transactions on Database Systems, 1986

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions

CPU: uniprocessor

* No multi-core synchronization complexity
CPU « Could be built on systems of the day
Memory Memory
—— « Tens of Megabytes
~—— Block « Good for both sequential and random accesses
Disk « Capacity is smaller than disk
ISR Disk

« Good for only sequential accesses

Notation

Relations: R, S (|R|<[|S)

Join: S M R

Memory: M

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Focus only on equi-join

Notation

Relations: R, S (|R|<[|S)

Join: S M R

Memory: M

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Relation R Relation S

SELECT *
FROMR, S
WHERE R.C3 =S.C5

Cl1 C2 C3 C4

C5 C6 C7 C8

Notation

answer = {} Vanilla query executor
for t; in R do

for t, in S do
if R.C3 = S.C5
then answer = answer U {(C1l,..,C8)}
return answer

Relation R Relation S

SELECT *
FROMR, S
WHERE R.C3 =S.C5

Cl1 C2 C3 C4

C5 C6 C7 C8

Notation

answer = {} Vanilla query executor
for t; in R do

for t, in S do
if R.C3 = S.C5
then answer = answer U {(C1l,..,C8)}
return answer

Key question: How to execute a join fast?

Relation R Relation S

SELECT *
FROMR, S
WHERE R.C3 =S.C5

Cl1 C2 C3 C4

C5 C6 C7 C8

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

10

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

11

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

Challenge: If a relation does not fit in memory,
need to sort data on disk

12

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S

13

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Each sorted run can fit in
memory

Unsorted R and S Sorted runs of R and S 14

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S —

_\ Output .
' L if match_ '

_,,

Unsorted R and S Sorted runsof Rand S Find matches in sorted runs '°

Sort Merge Join — Phase 1

Phase 1: Produce sorted runs of S and R
« Each run of S will be 2 x | M | average length

Memory

Priority queue (heap)

iInput
buffer

output

buffer

Memory layout in Phase 1

16

Sort Merge Join — Phase 1

Phase 1: Produce sorted runs of S and R
« Each run of S will be 2 x | M | average length

/ Memory
Priority queue (heap)

Q: Where does 2 come from?

A: Replacement selection
input | output

buffer | buffer

Memory layout in Phase 1

Sort Merge Join — Replacement Selection

| M|
output buffer buffer input buffer
Naive solution: Each run contains | M | blocks
* Load | M | blocks
 Sort

* Output | M | blocks

18

Sort Merge Join — Replacement Selection

Min

output buffer Heap input buffer

Replacement selection:
* load | M | blocks and sort

While heap is not empty
If new tuple = all tuples in output
add new tuple to heap
else
save new tuple for next run

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Replacement selection: A run contains 2 x | M | blocks on average

* load | M | blocks and sort

While heap is not empty
If new tuple = all tuples in output
add new tuple to heap
else
save new tuple for next run

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Replacement Selection

Min

output buffer Heap

input buffer

Replacement selection:
* load | M | blocks and sort

While heap is not empty
If new tuple = all tuples in output
add new tuple to heap
else
save new tuple for next run

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

A run contains 2 x| M | blocks on average

Total number of runs
| S|

| S| [RI
2X| M| 2x|M| ™~ |M]|

21

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result

* One input buffer required for each run

//—
if match_ '

_‘,

Find matches in sorted runs

}

Output

Memory
in-buf | in-buf in-buf
Rg R, Ry
in-buf | in-buf in-buf
Sg S; Sn

Memory layout in Phase 2

22

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result
* One input buffer required for each run

Memory
R . t in-buf | in-buf [[in-buf
equiremen R, R, R
| M | = total number runs
S| in-buf | in-buf [[in-buf
Satisfiedif [M|= TM] Sq S Sn
namely M|z Memory layout in Phase 2

23

Hash Join

Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn't fit fully in memory, partition hash space into ranges

Hash table on R
(size=|R|%xF)

24

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

25

Simple Hash Join

 Build a hash table on R

Hash table on R
(size=|R|*xF)

Memory

26

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

I I
|

-

—

write back
to disk -

— I I

Hash table on R ‘ I

(size=|R|xF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory
* Read in S to join with the subset of R

I I
|

-

—

write back
to disk -

— I I

Hash table on R ‘ I

(size=|R|xF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

-

- write back
write back to disk
to disk - S

— I I

Hash table on R ‘ \

(size=|R|xF)

Memory

Simple Hash Join — 2"9 pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

I |
2222223

-

write back
to disk

write back SR
isk
to dis S

— I I

Hash table on R ‘ I

(size=|R|xF)

Memory

Simple Hash Join — 3" pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

I |
V222

Hash table on R
(size=|R|*xF)

Memory

31

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
* GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

32

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

Memory
.................................... out-buf | out-buf out-buf
R R Ry

Memory layout when Partitioning R

out-buf
Sg

out-buf
S

out-buf

Sk

Memory layout when Partitioning S

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards
Phase 2: Separately join each pairs of partitions

Memory
Hash table
for R
input buffer
for S

Memory layout in Phase 2

35

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|

36

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F<|M|
. <

37

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F< | M |
- <
The maximum size of R to perform Grace hash join:
M M |?
Ry < ML M M| = TRT X F

F F

38

GRACE vs. Simple Hash Join

When |R|xF<|M|
« Simple hash join incurs no 10 traffic (better)
 GRACE hash join incurs |O linear to table sizes
* Trivial optimization to GRACE: use simple hash join when |R|[xF <| M|

When | M 22| R|xF>>|M|
« Simple hash join incurs significant 10 traffic
« GRACE hash join incurs 10 linear to table sizes (better)

39

GRACE vs. Simple Hash Join

When |R|xF<|M|
« Simple hash join incurs no 10 traffic (better)
 GRACE hash join incurs |O linear to table sizes
* Trivial optimization to GRACE: use simple hash join when |R|[xF <| M|

When | M 22| R|xF>>|M|
« Simple hash join incurs significant 10 traffic
« GRACE hash join incurs 10 linear to table sizes (better)

Whatif |R|x F > | M |27

40

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
* Hybrid hash join

Partition overflow and additional techniques

41

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

42

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

: . : Memor
Key observation: when | R | is relatively 4
_ C e out-buf | out-buf out-buf
small (e.g., | R|=2| M), significant R R S
0) 1 K

memory capacity is unused in Phase 1 of _

GRACE join ~_

Memory layout in Phase 1
of GRACE hash join

43

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

: . : Memor
Key observation: when | R | is relatively 4
_ C e out-buf | out-buf out-buf
small (e.g., | R|=2| M), significant R R S
0) 1 K

memory capacity is unused in Phase 1 of

GRACE Join Hash table for R,

Key idea: Use the otherwise-unused Memory layout in Phase 1
memory to build hash table for R, of GRACE hash join

44

Hybrid Hash Join

Case1:|R|xF<|M|
* No need to partition R
* |dentical to simple hash join

Memory

Hash table for R,

Memory layout in Phase 1
of hybrid hash join

45

Hybrid Hash Join

Case1:|R|xF<|M|
* No need to partition R
* |dentical to simple hash join

Case2: |R|*xF=a| M| (ais small)
* R, is a significant fraction of R
* R, is not written to disk
* Performance is like simple hash join

Memory

Hash table for R,

out-buf
R,

out-buf
R,

Memory layout in Phase 1

of hybrid hash join

46

Hybrid Hash Join

Case1:|R|xF<|M|
* No need to partition R
* |dentical to simple hash join

Case2: |R|*xF=a| M| (ais small)
* R, is a significant fraction of R
* R, is not written to disk
* Performance is like simple hash join

Case3:|R|xF>>| M|
* Ry is an insignificant fraction of R
» Performance is like GRACE hash join

Memory
out-buf | out-buf out-buf
R, R, Rg
out-buf | out-buf SULbuf
R, R, R

Hash table for R, K

Memory layout in Phase 1
of hybrid hash join

47

Evaluation

Seconds y

oo N » Sort Conclusion 1: Hash join
R . o0oTmerge is generally better than
500 |- ® Simple hash sort-merge join

200 L

— Conclusion 2: Hybrid

(@ © GRACE hash hash join is strictly better
Hybrid hash than simple and GRACE

hash joins

100 [

50

20 Megabytes of

1 2 5 10 20 50 ? real memory

48

Agenda

System architecture and notations

Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join

Partition overflow and additional techniques

49

Partition Overflow

So far we assume uniform random distribution for R and S

What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

50

Additional Techniques

Babb array (or bitmap filter)
* One bit per hash bucket in R
« Set the bit if a tuple in R maps to the bucket

 When scanning S, if a tuple hashes to a bucket where the bit is unset, can
discard the tuple immediately

51

Additional Techniques

Babb array (or bitmap filter)
* One bit per hash bucket in R
« Set the bit if a tuple in R maps to the bucket

 When scanning S, if a tuple hashes to a bucket where the bit is unset, can
discard the tuple immediately

Semi-join (R x)
R x S returns tuples in R that have matching rows in S
« Semi-joins can be cheaper than joins, and remove many tuples from R
« Can be added to any join algorithm above

52

Join — Comments and Q/A

* Will conclusions change on modern hardware?
— Bigger memory, SSD, HJ vs. SMJ

» Key distribution is super skewed?
* How does a DB choose between SMJ and HJ?
 Join implementations on multicore and distributed system?

53

Course Project Ideas

Sirius (https://github.com/sirius-db/sirius)
— GPU-native SQL engine

* |/ %
Spoﬁ? SQL & trino

© » © X ' '

DuckDB DORIS DBaTArusioN” { % Ibis (M Gluten
v v v v v
> Substrait query plan

YW Sirius

GPU-native SQL engine

Local Remote Object Data
Disk FS Store Lake

Sirius is 60x faster than ClickHouse and 8.2x faster than DuckDB

54

https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius

ldeas Related to Sirius

* Run more benchmarks: JOB, TPC-DS; report and fix bugs

* Help Sirius become a community DuckDB extension

« Support reading Parquet (with and without compression)

« Support reading data from S3

« Support more operators (e.g., window functions, intersection, union, etc.)
« Support variable length data types (e.g., array, list, struct, map)

« Optimize string, top-K, regex (e.g., fallback to DuckDB) performance

« Support vector data type in Sirius

* Support compression for integer, floating point, and string

« Graph queries on Sirius (e.g., shortest path)

55

Before Next Lecture

Submit review for

Yifel Yang, et al., Predicate Transfer: Efficient Pre-Filtering on Multi-
Join Queries. CIDR 2024

56

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf

	Slide 1
	Slide 2: Today’s Paper: Join
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: System Architecture and Assumptions
	Slide 6: Notation
	Slide 7: Notation
	Slide 8: Notation
	Slide 9: Notation
	Slide 10: Agenda
	Slide 11: Sort Merge Join
	Slide 12: Sort Merge Join
	Slide 13: Sort Merge Join
	Slide 14: Sort Merge Join
	Slide 15: Sort Merge Join
	Slide 16: Sort Merge Join – Phase 1
	Slide 17: Sort Merge Join – Phase 1
	Slide 18: Sort Merge Join – Replacement Selection
	Slide 19: Sort Merge Join – Replacement Selection
	Slide 20: Sort Merge Join – Replacement Selection
	Slide 21: Sort Merge Join – Replacement Selection
	Slide 22: Sort Merge Join – Phase 2
	Slide 23: Sort Merge Join – Phase 2
	Slide 24: Hash Join
	Slide 25: Agenda
	Slide 26: Simple Hash Join
	Slide 27: Simple Hash Join – 1st pass
	Slide 28: Simple Hash Join – 1st pass
	Slide 29: Simple Hash Join – 1st pass
	Slide 30: Simple Hash Join – 2nd pass
	Slide 31: Simple Hash Join – 3rd pass
	Slide 32: Agenda
	Slide 33: GRACE Hash Join
	Slide 34: GRACE Hash Join
	Slide 35: GRACE Hash Join
	Slide 36: GRACE Hash Join
	Slide 37: GRACE Hash Join
	Slide 38: GRACE Hash Join
	Slide 39: GRACE vs. Simple Hash Join
	Slide 40: GRACE vs. Simple Hash Join
	Slide 41: Agenda
	Slide 42: Hybrid Hash Join
	Slide 43: Hybrid Hash Join
	Slide 44: Hybrid Hash Join
	Slide 45: Hybrid Hash Join
	Slide 46: Hybrid Hash Join
	Slide 47: Hybrid Hash Join
	Slide 48: Evaluation
	Slide 49: Agenda
	Slide 50: Partition Overflow
	Slide 51: Additional Techniques
	Slide 52: Additional Techniques
	Slide 53: Join – Comments and Q/A
	Slide 54: Course Project Ideas
	Slide 55: Ideas Related to Sirius
	Slide 56: Before Next Lecture

