
Xiangyao Yu

9/9/2025

CS 764: Topics in Database Management Systems

Lecture 2: Join

1

Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2

Agenda

3

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

Agenda

4

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions

CPU: uniprocessor
• No multi-core synchronization complexity

• Could be built on systems of the day

Memory
• Tens of Megabytes

• Good for both sequential and random accesses

• Capacity is smaller than disk

Disk
• Good for only sequential accesses

CPU

Disk

Memory

Block

5

Notation

Relations: R, S (| R | < | S |)

Join: S ⋈ R

Memory: M

| R |: number of blocks in relation R (similar for S and M)

F: hash table for R occupies | R | * F blocks

Focus only on equi-join

6

Notation

Relations: R, S (| R | < | S |)

Join: S ⋈ R

Memory: M

| R |: number of blocks in relation R (similar for S and M)

F: hash table for R occupies | R | * F blocks

7

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *

FROM R, S

WHERE R.C3 = S.C5

Notation

8

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *

FROM R, S

WHERE R.C3 = S.C5

answer = {}

for t1 in R do

 for t2 in S do

 if R.C3 = S.C5

 then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Notation

9

Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT *

FROM R, S

WHERE R.C3 = S.C5

answer = {}

for t1 in R do

 for t2 in S do

 if R.C3 = S.C5

 then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Key question: How to execute a join fast?

Agenda

10

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

11

Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse
both relations in the sorting order

R S

12

Challenge: If a relation does not fit in memory,
need to sort data on disk

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S 13

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S Sorted runs of R and S 14

Each sorted run can fit in
memory

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S Sorted runs of R and S 15

Output

if match

Find matches in sorted runs

Sort Merge Join – Phase 1

Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length

16

Memory

input

buffer

output

buffer

Priority queue (heap)

Memory layout in Phase 1

Sort Merge Join – Phase 1

Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length

17

Memory

input

buffer

output

buffer

Priority queue (heap)
Q: Where does 2 come from?

A: Replacement selection

Memory layout in Phase 1

Sort Merge Join – Replacement Selection

18

| M |

buffer input bufferoutput buffer

Naïve solution:
• Load | M | blocks

• Sort

• Output | M | blocks

Each run contains | M | blocks

Sort Merge Join – Replacement Selection

19

Replacement selection:
• load | M | blocks and sort

While heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else

 save new tuple for next run

Min

Heap input bufferoutput buffer

Sort Merge Join – Replacement Selection

20

Replacement selection:
• load | M | blocks and sort

Min

Heap input bufferoutput buffer

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

A run contains 2 × | M | blocks on average

While heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else

 save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Replacement Selection

21

Replacement selection:
• load | M | blocks and sort

A run contains 2 × | M | blocks on average

Min

Heap input bufferoutput buffer

[1] https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

=
| 𝑆 |

2 × | 𝑀 |
 +

| 𝑅 |

2 × | 𝑀 |
≤

| 𝑆 |

 𝑀

Total number of runsWhile heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else

 save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Phase 2

Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

22

Memory

in-buf

R0

in-buf

R1

in-buf

Rn

…

in-buf

S0

in-buf

S1

in-buf

Sm

…

Memory layout in Phase 2

Output

if match

Find matches in sorted runs

Sort Merge Join – Phase 2

Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement

 | M | ≥ total number runs

Satisfied if

23

Memory

in-buf

R0

in-buf

R1

in-buf

Rn

…

in-buf

S0

in-buf

S1

in-buf

Sm

…
 𝑀 ≥

| 𝑆 |

 𝑀

 𝑀 ≥ | 𝑆 |namely Memory layout in Phase 2

Hash Join

Build a hash table on the smaller relation (R) and probe with larger (S)

Hash tables have overhead, call it F

When R doesn’t fit fully in memory, partition hash space into ranges

24

Hash table on R

(size = | R | × F)

S

Agenda

25

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

Simple Hash Join

• Build a hash table on R

26

Hash table on R

(size = | R | × F)
Memory

S

Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

27

Hash table on R

(size = | R | × F)
Memory

S

write back

to disk

Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

28

Hash table on R

(size = | R | × F)
Memory

S

write back

to disk

Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk

29

Hash table on R

(size = | R | × F)
Memory

S

write back

to disk

write back

to disk

Simple Hash Join – 2nd pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk

30

Hash table on R

(size = | R | × F)
Memory

S

write back

to disk

write back

to disk

Simple Hash Join – 3rd pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk

31

Hash table on R

(size = | R | × F)
Memory

S

Agenda

32

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

33

R S

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

R S

Memory

out-buf

R0

out-buf

R1

out-buf

Rk

…

Memory layout when Partitioning R

out-buf

S0

out-buf

S1

out-buf

Sk

…

Memory layout when Partitioning S

GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

35

R S

Memory

Hash table

for Ri

Memory layout in Phase 2

input buffer

for S

GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

36

𝑘 ≤ 𝑀

GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

37

𝑘 ≤ 𝑀

 𝑅

𝑘
× 𝐹 ≤ 𝑀

GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join:

38

𝑘 ≤ 𝑀

 𝑅

𝑘
× 𝐹 ≤ 𝑀

 𝑅 ≤
 𝑀

𝐹
𝑘 ≤

 𝑀 2

𝐹
 𝑀 ≥ 𝑅 × 𝐹

GRACE vs. Simple Hash Join

When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)

• GRACE hash join incurs IO linear to table sizes

• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |
• Simple hash join incurs significant IO traffic

• GRACE hash join incurs IO linear to table sizes (better)

39

GRACE vs. Simple Hash Join

When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)

• GRACE hash join incurs IO linear to table sizes

• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |
• Simple hash join incurs significant IO traffic

• GRACE hash join incurs IO linear to table sizes (better)

40

What if 𝑹 × 𝑭 > 𝑴 𝟐?

Agenda

41

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

42

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

43

Memory

out-buf

R0

out-buf

R1

out-buf

Rk

…

Memory layout in Phase 1

of GRACE hash join

Key observation: when | R | is relatively

small (e.g., | R | = 2 | M |), significant

memory capacity is unused in Phase 1 of

GRACE join

Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!

44

Memory

out-buf

R0

out-buf

R1

out-buf

Rk

…

Memory layout in Phase 1

of GRACE hash join

Key observation: when | R | is relatively

small (e.g., | R | = 2 | M |), significant

memory capacity is unused in Phase 1 of

GRACE join

Key idea: Use the otherwise-unused

memory to build hash table for R0

Hash table for R0

Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

45

Memory

Memory layout in Phase 1

of hybrid hash join

Hash table for R0

Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R

• R0 is not written to disk

• Performance is like simple hash join

46

Memory

Memory layout in Phase 1

of hybrid hash join

Hash table for R0

out-buf

R1

out-buf

R2

Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R

• R0 is not written to disk

• Performance is like simple hash join

Case 3: | R | × F >> | M |
• R0 is an insignificant fraction of R

• Performance is like GRACE hash join
47

Memory

Memory layout in Phase 1

of hybrid hash join

out-buf

R1

out-buf

R2

out-buf

R5

…

Hash table for R0

out-buf

R3

out-buf

R4

out-buf

Rk

Evaluation

Conclusion 1: Hash join
is generally better than
sort-merge join

Conclusion 2: Hybrid
hash join is strictly better
than simple and GRACE
hash joins

48

Sort-merge

Simple hash

GRACE hash
Hybrid hash

Agenda

49

System architecture and notations

Join algorithms

• Sort merge join

• Simple hash join

• GRACE hash join

• Hybrid hash join

Partition overflow and additional techniques

Partition Overflow

50

So far we assume uniform random distribution for R and S

What if we guess wrong on size required for R hash table and a

partition does not fit in memory?

Solution: further divide into smaller partitions range

Additional Techniques

51

Babb array (or bitmap filter)

• One bit per hash bucket in R

• Set the bit if a tuple in R maps to the bucket

• When scanning S, if a tuple hashes to a bucket where the bit is unset, can

discard the tuple immediately

Additional Techniques

52

Babb array (or bitmap filter)

• One bit per hash bucket in R

• Set the bit if a tuple in R maps to the bucket

• When scanning S, if a tuple hashes to a bucket where the bit is unset, can

discard the tuple immediately

Semi-join (R ⋉ S)

• R ⋉ S returns tuples in R that have matching rows in S

• Semi-joins can be cheaper than joins, and remove many tuples from R

• Can be added to any join algorithm above

Join – Comments and Q/A

53

• Will conclusions change on modern hardware?

– Bigger memory, SSD, HJ vs. SMJ

• Key distribution is super skewed?

• How does a DB choose between SMJ and HJ?

• Join implementations on multicore and distributed system?

Course Project Ideas

Sirius (https://github.com/sirius-db/sirius)
– GPU-native SQL engine

54

Sirius is 60x faster than ClickHouse and 8.2x faster than DuckDB

https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius

Ideas Related to Sirius

• Run more benchmarks: JOB, TPC-DS; report and fix bugs

• Help Sirius become a community DuckDB extension

• Support reading Parquet (with and without compression)

• Support reading data from S3

• Support more operators (e.g., window functions, intersection, union, etc.)

• Support variable length data types (e.g., array, list, struct, map)

• Optimize string, top-K, regex (e.g., fallback to DuckDB) performance

• Support vector data type in Sirius

• Support compression for integer, floating point, and string

• Graph queries on Sirius (e.g., shortest path)

55

Before Next Lecture

Submit review for

Yifei Yang, et al., Predicate Transfer: Efficient Pre-Filtering on Multi-
Join Queries. CIDR 2024

56

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf

	Slide 1
	Slide 2: Today’s Paper: Join
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: System Architecture and Assumptions
	Slide 6: Notation
	Slide 7: Notation
	Slide 8: Notation
	Slide 9: Notation
	Slide 10: Agenda
	Slide 11: Sort Merge Join
	Slide 12: Sort Merge Join
	Slide 13: Sort Merge Join
	Slide 14: Sort Merge Join
	Slide 15: Sort Merge Join
	Slide 16: Sort Merge Join – Phase 1
	Slide 17: Sort Merge Join – Phase 1
	Slide 18: Sort Merge Join – Replacement Selection
	Slide 19: Sort Merge Join – Replacement Selection
	Slide 20: Sort Merge Join – Replacement Selection
	Slide 21: Sort Merge Join – Replacement Selection
	Slide 22: Sort Merge Join – Phase 2
	Slide 23: Sort Merge Join – Phase 2
	Slide 24: Hash Join
	Slide 25: Agenda
	Slide 26: Simple Hash Join
	Slide 27: Simple Hash Join – 1st pass
	Slide 28: Simple Hash Join – 1st pass
	Slide 29: Simple Hash Join – 1st pass
	Slide 30: Simple Hash Join – 2nd pass
	Slide 31: Simple Hash Join – 3rd pass
	Slide 32: Agenda
	Slide 33: GRACE Hash Join
	Slide 34: GRACE Hash Join
	Slide 35: GRACE Hash Join
	Slide 36: GRACE Hash Join
	Slide 37: GRACE Hash Join
	Slide 38: GRACE Hash Join
	Slide 39: GRACE vs. Simple Hash Join
	Slide 40: GRACE vs. Simple Hash Join
	Slide 41: Agenda
	Slide 42: Hybrid Hash Join
	Slide 43: Hybrid Hash Join
	Slide 44: Hybrid Hash Join
	Slide 45: Hybrid Hash Join
	Slide 46: Hybrid Hash Join
	Slide 47: Hybrid Hash Join
	Slide 48: Evaluation
	Slide 49: Agenda
	Slide 50: Partition Overflow
	Slide 51: Additional Techniques
	Slide 52: Additional Techniques
	Slide 53: Join – Comments and Q/A
	Slide 54: Course Project Ideas
	Slide 55: Ideas Related to Sirius
	Slide 56: Before Next Lecture

