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Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2
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System Architecture and Assumptions 

CPU: uniprocessor
• No multi-core synchronization complexity

• Could be built on systems of the day

Memory 
• Tens of Megabytes

• Good for both sequential and random accesses

• Capacity is smaller than disk 

Disk
• Good for only sequential accesses

CPU

Disk

Memory

Block
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Notation

Relations: R, S (| R | < | S |)

Join: S ⋈ R

Memory: M 

| R |: number of blocks in relation R (similar for S and M)

F: hash table for R occupies | R | * F blocks

Focus only on equi-join 
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Notation

Relations: R, S (| R | < | S |)

Join: S ⋈ R

Memory: M 

| R |: number of blocks in relation R (similar for S and M)

F: hash table for R occupies | R | * F blocks
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 

FROM R, S

WHERE R.C3 = S.C5



Notation
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 

FROM R, S

WHERE R.C3 = S.C5

answer = {}

for t1 in R do

  for t2 in S do

    if R.C3 = S.C5

      then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor
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Relation R Relation S

C1 C2 C3 C4

C5 C6 C7 C8

SELECT * 

FROM R, S

WHERE R.C3 = S.C5

answer = {}

for t1 in R do

  for t2 in S do

    if R.C3 = S.C5

      then answer = answer ∪ {(C1,…,C8)}

return answer

Vanilla query executor

Key question: How to execute a join fast?
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Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse 
both relations in the sorting order

R S
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Sort Merge Join

Key idea: sort both relations based on join attributes, then traverse 
both relations in the sorting order

R S
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Challenge: If a relation does not fit in memory, 
need to sort data on disk



Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S 13



Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S Sorted runs of R and S 14

Each sorted run can fit in 
memory



Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S Sorted runs of R and S 15

Output 

if match

Find matches in sorted runs



Sort Merge Join – Phase 1 

Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length
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Memory

input 

buffer

output 

buffer

Priority queue (heap)

Memory layout in Phase 1



Sort Merge Join – Phase 1 

Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length
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Memory

input 

buffer

output 

buffer

Priority queue (heap)
Q: Where does 2 come from? 

A: Replacement selection 

Memory layout in Phase 1



Sort Merge Join – Replacement Selection
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| M | 

buffer input bufferoutput buffer

Naïve solution: 
• Load | M | blocks

• Sort

• Output | M | blocks

Each run contains | M | blocks



Sort Merge Join – Replacement Selection

19

Replacement selection: 
• load | M | blocks and sort

While heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else 

 save new tuple for next run

Min

Heap input bufferoutput buffer



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

Min

Heap input bufferoutput buffer

[1]  https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

A run contains 2 × | M | blocks on average

While heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else 

 save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

A run contains 2 × | M | blocks on average

Min

Heap input bufferoutput buffer

[1]  https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

= 
| 𝑆 |

2 × | 𝑀 |
 + 

| 𝑅 |

2 × | 𝑀 |
≤

| 𝑆 |

 𝑀 

Total number of runsWhile heap is not empty

If new tuple ≥ all tuples in output

 add new tuple to heap

else 

 save new tuple for next run

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Phase 2 

Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

22

Memory

in-buf 

R0

in-buf 

R1

in-buf 

Rn

…

in-buf 

S0

in-buf 

S1

in-buf 

Sm

…

Memory layout in Phase 2

Output 

if match

Find matches in sorted runs



Sort Merge Join – Phase 2 

Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement 

 | M | ≥ total number runs

Satisfied if
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Memory

in-buf 

R0

in-buf 

R1

in-buf 

Rn

…

in-buf 

S0

in-buf 

S1

in-buf 

Sm

…
 𝑀 ≥

| 𝑆 |

 𝑀 

 𝑀 ≥ | 𝑆 |namely Memory layout in Phase 2



Hash Join

Build a hash table on the smaller relation (R) and probe with larger (S)

Hash tables have overhead, call it F

When R doesn’t fit fully in memory, partition hash space into ranges

24

Hash table on R

(size = | R | × F )

S
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Simple Hash Join

• Build a hash table on R
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Hash table on R

(size = | R | × F )
Memory

S



Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory
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Hash table on R

(size = | R | × F )
Memory

S

write back 

to disk



Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R
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Hash table on R

(size = | R | × F )
Memory

S

write back 

to disk



Simple Hash Join – 1st pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk
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Hash table on R

(size = | R | × F )
Memory

S

write back 

to disk

write back 

to disk



Simple Hash Join – 2nd pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk
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Hash table on R

(size = | R | × F )
Memory

S

write back 

to disk

write back 

to disk



Simple Hash Join – 3rd pass

• Build a hash table on R

• If R does not fit in memory, find a subset of buckets that fit in memory

• Read in S to join with the subset of R

• The remaining tuples of S and R are written back to disk

31

Hash table on R

(size = | R | × F )
Memory

S
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GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

33

R S



GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions

R S

Memory

out-buf 

R0

out-buf 

R1

out-buf 

Rk

…

Memory layout when Partitioning R

out-buf 

S0

out-buf 

S1

out-buf 

Sk

…

Memory layout when Partitioning S



GRACE Hash Join

Phase 1: Partition both R and S into pairs of k shards

Phase 2: Separately join each pairs of partitions
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R S

Memory

Hash table 

for Ri

Memory layout in Phase 2

input buffer 

for S



GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

36

𝑘 ≤  𝑀 



GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory
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𝑘 ≤  𝑀 

 𝑅

𝑘
× 𝐹 ≤  𝑀 



GRACE Hash Join

Assume k partitions for R and S

In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join: 
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𝑘 ≤  𝑀 

 𝑅

𝑘
× 𝐹 ≤  𝑀 

 𝑅 ≤
 𝑀 

𝐹
𝑘 ≤

 𝑀 2

𝐹
  𝑀 ≥  𝑅 ×  𝐹



GRACE vs. Simple Hash Join

When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)

• GRACE hash join incurs IO linear to table sizes

• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |  
• Simple hash join incurs significant IO traffic

• GRACE hash join incurs IO linear to table sizes (better)

39



GRACE vs. Simple Hash Join

When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)

• GRACE hash join incurs IO linear to table sizes

• Trivial optimization to GRACE: use simple hash join when | R | × F < | M |

When | M |2 ≥ | R | × F >> | M |  
• Simple hash join incurs significant IO traffic

• GRACE hash join incurs IO linear to table sizes (better)
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What if   𝑹 ×  𝑭 >  𝑴 𝟐?
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Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!
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Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!
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Memory

out-buf 

R0

out-buf 

R1

out-buf 

Rk

…

Memory layout in Phase 1 

of GRACE hash join

Key observation: when | R | is relatively 

small (e.g., | R | = 2 | M |), significant 

memory capacity is unused in Phase 1 of 

GRACE join



Hybrid Hash Join

When two algorithms are good in different settings, create a hybrid!
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Memory

out-buf 

R0

out-buf 

R1

out-buf 

Rk

…

Memory layout in Phase 1 

of GRACE hash join

Key observation: when | R | is relatively 

small (e.g., | R | = 2 | M |), significant 

memory capacity is unused in Phase 1 of 

GRACE join

Key idea: Use the otherwise-unused 

memory to build hash table for R0

Hash table for R0



Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

45

Memory

Memory layout in Phase 1 

of hybrid hash join

Hash table for R0



Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R

• R0 is not written to disk

• Performance is like simple hash join

46

Memory

Memory layout in Phase 1 

of hybrid hash join

Hash table for R0

out-buf 

R1

out-buf 

R2



Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R

• Identical to simple hash join

Case 2: | R | × F = ⍺ | M | (⍺ is small)
• R0 is a significant fraction of R

• R0 is not written to disk

• Performance is like simple hash join

Case 3: | R | × F >> | M |
• R0 is an insignificant fraction of R

• Performance is like GRACE hash join
47

Memory

Memory layout in Phase 1 

of hybrid hash join

out-buf 

R1

out-buf 

R2

out-buf 

R5

…

Hash table for R0

out-buf 

R3

out-buf 

R4

out-buf 

Rk



Evaluation

Conclusion 1: Hash join 
is generally better than 
sort-merge join

Conclusion 2: Hybrid 
hash join is strictly better 
than simple and GRACE 
hash joins

48

Sort-merge

Simple hash

GRACE hash
Hybrid hash
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Partition Overflow
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So far we assume uniform random distribution for R and S

What if we guess wrong on size required for R hash table and a 

partition does not fit in memory? 

Solution: further divide into smaller partitions range



Additional Techniques
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Babb array (or bitmap filter)

• One bit per hash bucket in R

• Set the bit if a tuple in R maps to the bucket

• When scanning S, if a tuple hashes to a bucket where the bit is unset, can 

discard the tuple immediately



Additional Techniques
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Babb array (or bitmap filter)

• One bit per hash bucket in R

• Set the bit if a tuple in R maps to the bucket

• When scanning S, if a tuple hashes to a bucket where the bit is unset, can 

discard the tuple immediately

Semi-join (R ⋉ S)

• R ⋉ S returns tuples in R that have matching rows in S

• Semi-joins can be cheaper than joins, and remove many tuples from R

• Can be added to any join algorithm above



Join – Comments and Q/A

53

• Will conclusions change on modern hardware? 

– Bigger memory, SSD, HJ vs. SMJ 

• Key distribution is super skewed? 

• How does a DB choose between SMJ and HJ? 

• Join implementations on multicore and distributed system?



Course Project Ideas

Sirius (https://github.com/sirius-db/sirius)
– GPU-native SQL engine 

54

Sirius is 60x faster than ClickHouse and 8.2x faster than DuckDB

https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius
https://github.com/sirius-db/sirius


Ideas Related to Sirius

• Run more benchmarks: JOB, TPC-DS; report and fix bugs

• Help Sirius become a community DuckDB extension

• Support reading Parquet (with and without compression)

• Support reading data from S3

• Support more operators (e.g., window functions, intersection, union, etc.)

• Support variable length data types (e.g., array, list, struct, map)

• Optimize string, top-K, regex (e.g., fallback to DuckDB) performance

• Support vector data type in Sirius 

• Support compression for integer, floating point, and string

• Graph queries on Sirius (e.g., shortest path)
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Before Next Lecture

Submit review for

 

Yifei Yang, et al., Predicate Transfer: Efficient Pre-Filtering on Multi-
Join Queries. CIDR 2024

56

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/pt.pdf
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