WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 20: Isolation

Xiangyao Yu
11/11/2025

Today's Paper: Isolation

A Critique of ANSI SQL Isolation Levels

Hal Berenson Microsoft Corp. ‘haroldb@microsoft.com
Phil Bernstein Microsoft Corp. philbe@microsoft.com
Jim Gray UC. Berkeley gray@crl.com

Jim Melton Sybase Corp. Jjim.melton@sybase.com
Elizabeth O’Neil UMass/Boston coneil @cs.umb.edu
Patrick O'Neil UMass/Boston poneil @cs.umb.edu

Abstract: ANSI SQL-92 [MS, ANSI] defines Isolation
Levels in terms of phenomena: Dirty Reads, Non-Re-
peatable Reads, and Phantoms. This paper shows that these
phenomena and the ANSI SQL definitions fail to properly
characterize several popular isolation levels, including the

dard locking impl ions of the levels covered.
guity in the of the pk is investi-
gated and a more formal statement is arrived at; in addition
new ph that better ch ize i ion Lypes are
introduced. Finally, an important multiversion isolation
type, called Snapshot Isolation, is defined.

A i

1. Introduction

Running concurrent transactions at different isolation levels
allows application designers (o trade off concurrency and
throughput for correctness. Lower isolation levels increase
transaction concurrency at the risk of allowing transactions
to observe a fuzzy or incorrect database state. Surprisingly,
some transactions can execute at the highest isolation level
(perfect serializability) while concurrently exccuting transac-
tions running at a lower isolation level can access states
that are not yet committed or that postdate states the trans-
action read carlier [GLPT]. Of course, transactions running
at lower isolation levels can produce invalid data,
Application designers must guard against a later transaction
running at a higher isolation level accessing this invalid
data and propagating such errors.

The ANSI/ISO SQL-92 specifications [MS, ANSI] define four
isolation levels: (1) READ UNCOMMITTED, (2) READ
COMMITTED, (3) REPEATABLE READ, (4) SERIALIZABLE.
These levels are defined with the classical serializability def-
inition, plus three prohibited operati bseq] called
phenomena: Dirty Read, Non-repeatable Read,and
Phantom. The concept of a phenomenon is not explicitly
defined in the ANSI specifications, but the specifications

The ANSI isolation levels are related to the behavior of lock

hedul Some lock schedulers allow t i o
vary the scope and duration of their lock requests, thus de-
parting from pure two-phase locking. This idea was intro-
duced by [GLPT], which defined Degrees of Consistency in
three ways: locking, data-flow graphs, and anomalies.
Defining isolation levels by phenomena (anomalies) was
intended to allow lock-based impl. ions of the
SQL standard.

This paper shows a number of weaknesses in the anomaly
approach to defining isolation levels. The three ANSI phe-
nomena are ambiguous, and even in their loosest interpreta-
tions do not exclude some anomalous behavior that may
arise in execution histories, This leads to some counter-in-
tuitive results, In particular, lock-based isolation levels
have different characteristics than their ANSI equivalents.
This is disconcerting because commercial database systems
typically use locking implementations. Additionally, the
ANSI ph do not distinguish b a number of
types of isolation level behavior that are popular in com-
mercial systems. Additional ph to ch ize

these isolation levels are suggested here.

Section 2 introd the basic inology of isolation lev-
els. It defines the ANSI SQL and locking isolation levels.
Section 3 examines some drawbacks of the ANSI isolation
levels and proposes a new phenomenon. Other popular iso-
lation levels are also defined. The various definitions map
between ANSI SQL isolation levels and the degrees of con-
sistency defined in 1977 in [GLPT]. They also encompass
Chris Date’s definitions of Cursor Stability and Repeatable
Read [DAT]. Discussing the isolation levels in a uniform
framework reduces misunderstandings arising from indepen-
dent terminology.

Section 4 introduces a multiversion concurrency control
hanism, called Snapshot [solation, that avoids the ANSI

suggest that phenomena are operation subseq that
may lead to anomalous (perhaps non-serializable) behavior.

SQL ph but is not serializable. Snapshot Isolation

‘We refer to anomalies in what follows when making sug-
gested additions to the set of ANSI phenomena. As shown
later, there is a technical distinction between anomalies and
phenomena, but this distinction is not crucial for a general
understanding,

Permission to copy without fee all or part of this material is

g_ramsd provided that the copies are not made or distributed for

iract commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Comptting
Machinary.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD ' 95,San Jose , CA USA
© 1995 ACM 0-89791-731-6/95/0005..$3.50

is interesting in its own right, since it provides a reduced-
isolation level approach that lies between READ COM-
MITTED and REPEATABLE READ. A new formalism
(available in the longer version of this conference paper
[OCOBBGM]) connects reduced isolation levels for multiver-
sioned data to the classical single-version locking serializ-
ability theory.

Section 5 explores some new anomalies to differentiate the
isolation levels introduced in Sections 3 and 4. The ex-
tended ANSI SQL phenomena proposed here lack the power
to characterize Snapshot isolation and Cursor Stability.
Section 6 presents a Summary and Conclusions.

SIGMOD Record, 1995

Agenda

ANSI isolation levels
Cursor stability
Snapshot isolation

Complexity of isolation

Long vs. Short Locks

Short locks

— Locks held for the duration of a single action

Long locks
— Locks held to the end of the transaction

In strict two-phase locking, a transaction holds only long locks

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1. Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1. Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

Degree O:
— Short write locks
— No read locks

Degree of Consistency (lsolation)

Degree 3: Serializability (assuming no phantom effect)

— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1. Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

Degree O:
— Short write locks
— No read locks

Increasing concurrency

Weaker guarantees

ANSI Isolation Levels

Table 1. ANSI SQL Isolation Levels Defined in terms of the Three Original Phenomena

Isolation Level P1 (or A1) P2 (or A2) P3 (or A3)
_ Dirty Read | Fuzzy Read Phantom
Degree 1 ANSI READ UNCOMMITTED Possible | Possible Possible
Degree 2 ANS| READ COMMITTED Not Possible Possible Possible
ANS| REPEATABLE READ Not Possible Not Possible Possible
Degree 3 ANOMALY SERIALIZABLE Not Possible Not Possible Not Possible

ANSI SQL-92 defines four isolation levels by phenomena
The original definitions were ambiguous

This lecture focuses on the “correct’ definitions

Notation

w1[x]: transaction 1 writes record x
r2[y]. transaction 2 reads record y

w1[P] (r1[P]): transaction 1 writes (reads) records that satisfy
predicate P

c1: commit of transaction 1

al: abort of transaction 1

11

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency
Level = Locking
Isolation Level

Read Locks on
Data Items and Predicates
(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

Degree 3 = Locking
SERIALIZABLE

Well-formed Reads
Long duration Read locks (both)

Well-formed Writes,
Long_duration Write locks

12

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on

Level = Locking Data Items and Predicates Data Items and Predicates
| Isolation Level (the same unless noted) (always the same)

Locking Waell-formed Reads Well-formed Writes,

REPEATABLE READ L ' - Long duration Write iocks

Short duration Read Predicate locks
Degree 3 = Locking Well-formed Reads Well-formed Writes,
SERIALIZABLE Long duration Read locks (both) Long duration Write locks

13

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records

Long locks: hold the lock until transaction commits or aborts

Consistency
Level = Locking
| |solation Level

Read Locks on
Data Items and Predicates
(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

Locking
REPEATABLE READ

Degree 3 = Locking
SERIALIZABLE

Well-formed Reads
4 \ g

Short duration Read Predicate locks

Well-formed Writes,
Long duration Write locks

Well-formed Reads
Long duration Read locks (both)

Well-formed Writes,
Long_duration Write locks

Phenomenon P3: Phantom
r1[P]...w2[y in P]... (c1 or a1) and (c2 or a2) any order)

— Anomalous behavior: multiple r[P]’s return different results

P3 is allowed in repeatable read but forbidden in serializable

14

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records

Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates
Isolation Level (the same unless noted) (always the same)

| Degree 2 = Locking Well-formed Reads - Well-formed Writes,
READ COMMITTED l Short duration Read locks (both) Long duration Write locks
Locking Well-formed Reads Well-formed Writes,

REPEATABLE READ Long duration data-item Read locks | Long duration Write locks
Short duration Read Predicate locks

Phenomenon P2: Fuzzy Read

r1[x]...w2[x]... (c1 oral) and (c2 or a2) any order)
— Anomalous behavior: multiple r[x]'s return different results

P2 is allowed in read committed but forbidden in repeatable read

|
-
|

23

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records

Long locks: hold the lock until transaction commits or aborts

Consistency
Level = Locking
| |solation Level

Read Locks on
Data Items and Predicates
(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

Degree 1 = Locking

none required

Well-formed Writes
Long duration Write locks

READ UNCOMMITTED
LDegree 2 = Locking Well-formed Reads
READ COMMITTED Short duration Read locks (both)

Well-formed Writes,
Long duration Write locks

Phenomenon P1: Dirty Read

w1[x]...r2[x]... (c1 oral) and (c2 or a2) any order)
— Anomalous behavior: transaction reads data that was never committed

P1 is allowed in read uncommitted but forbidden in read committed

Locking-Based Definition

Well-formed: lock (on tuple or predicate) before reading/writing records
Long locks: hold the lock until transaction commits or aborts

Consistency Read Locks on Write Locks on I
Level = Locking Data Items and Predicates Data Items and Predicates
Isolation Level (the same unless noted) (always the same)
Degree O none required Well-formed Writes
Short duration Write locks
Degree 1 = Locking none required Well-formed Writes
| READ UNCOMMITTED Long duration Write locks

Phenomenon P0: Dirty Write

w1[x]...w2[X]... (c1 or a1) and (c2 or a2) any order)
— Anomalous behavior: when transaction 1 rolls back x, unclear what value to roll back to

PO is forbidden in all ANSI isolation levels

Equivalent Definitions

Table 3. ANSI SQL Isolation Levels Defined in terms of the four phenomena

i PO P1 P2 P3
Isolation Level Dirty Write | Dirty Read | Fuzzy Read| Phantom
READ UNCOMMITTED | Not Possible | Possible | Possible Possible
READ COMMITTED Not Possible | Not Possible | Possible Possible
REPEATABLE READ Not Possible | Not Possible | Not Possible | Possible
SERIALIZABLE Not Possible | Not Possible | Not Possible Not Possible

Level = Locking

Consistency
Isolation Level

Read Locks on
Data Items and Predicates

Degree 1 = Locking
READ UNCOMMITTED

(the same unless noted)

Write Locks on
Data Items and Predicates
(always the same)

none required

Well-formed Writes
Long duration Write locks

Degree 2 = Locking
READ COMMITTED

Well-formed Reads
Short duration Read locks (both)

Well-formed Writes,
Long duration Write locks

Locking
REPEATABLE READ

Well-formed Reads
Long duration data-item Read locks
Short duration Read Predicate locks

Well-formed Writes,
Long duration Write locks

Degree 3 = Locking
SERIALIZABLE

Well-formed Reads

Long duration Read locks (both)

Well-formed Writes,
Long_duration Write locks

26

Hierarchy of Isolation Levels

Isolation level L1 is weaker than isolation level L2, denoted L1 << L2,
If all non-serializable histories that obey the criteria of L2 also satisfy
L1 and there is at least one non-serializable history that can occur at

level L1 but not at level L2.

Read Uncommitted
<< Read Committed (RC)
<< Repeatable Read (RR)
<< Serializability (SR)

28

Hierarchy of Isolation Levels

Serializable = Degree 3 = {Date, DB2} Repeatable Read

P2 / Repeatab

Oracle

P3 ASB

P2 A3

Consistent Cursor Stability

Read Y‘m

P4C

ASB

Snapshot
-~ o~
le Read ~____~ Isolation

A3, ASA, P4

Read Committed = Degreee 2

P1

Read Uncommitted = Degree 1

PO
Degree 0

29

Agenda

ANSI isolation levels
Cursor stability
Snapshot isolation

Complexity of isolation

30

Cursor Stability

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates
Isolation Level (the same unless noted) (always the same)
LDegree 2 = Locking Well-formed Reads Well-formed Writes,
READ COMMITTED Short duration Read locks (both) Long duration Write locks
Cursor Stability Well-formed Reads Well-formed Writes,
(see Section 4.1) Read locks held on current of cursor ‘ Long duration Write locks
ort duration Head Predicate locks
Locking Well-formed Reads Well-formed Writes,
REPEATABLE READ Long duration data-item Read locks | Long duration Write locks I
Short duration Read Predicate locks

Cursor: A pointer to one row in a set of rows. The cursor can only reference
one row at a time, but can move to other rows of the result set as needed

Cursor Stability: The row currently pointed to is locked
Phenomenon P4: Lost Update
r1x]...w2[x]...w1[x]...c1

— Anomalous behavior: transaction 2's update is overwritten by transaction 1

31

Agenda

ANSI isolation levels
Cursor stability
Snapshot isolation

Complexity of isolation

32

Snapshot Isolation (Sl)

t1 t2 Time
i | > (physical or
Start-Timestamp Commit-Timestamp logical)

All reads see a snapshot of data as of the time the transaction
started (t1)

A transaction can commit if records in write set are not modified by
other transactions between t1 and t2

At commit time, apply all writes with timestamp t2

33

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew
r1[x]...r2[y]...w1ly]...w2[x]...(c1 or c2 occur)

— Transactions see a snapshot that does not reflect the latest updates

34

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew
r1[x]...r2[y]...w1ly]...w2[x]...(c1 or c2 occur)

— Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the
changes before the transaction starts, in physical time

— Serializability requires no real-time ordering

— Sl can be stronger than SR in this particular aspect

35

Snapshot Isolation vs. Serializability

Anomaly A5B: Write Skew
r1[x]...r2[y]...w1ly]...w2[x]...(c1 or c2 occur)

— Transactions see a snapshot that does not reflect the latest updates

In practice, snapshot isolation also requires the read snapshot reflects all the
changes before the transaction starts, in physical time

— Serializability requires no real-time ordering
— Sl can be stronger than SR in this particular aspect

Strict serializability (i.e., linearizability)
— Serializability + real-time constraint
— E.g., if transaction T1 commits before T2 starts, T1 must precede T2 in the serial order

36

Hierarchy of Isolation Levels

Serializable = Degree 3 = {Date, DB2} Repeatable Read

AS5B
P3 A5B :
——— Snapshot Anomaly A5B: Write Skew

F’2/F"*‘*p“m't"’l"'E Read __—~ Isolation (q[x].. r2fy]...wAfy]...w2[x]...(c1 or c2 occur)

Oracle P2 9 Allowed in SI but not RR
Consistent Cursor Stability
Fead Y“C P4C . Phenomenon P3: Phantom
Read Committed = Degreee 2 r1[P]...w2[y in P]... (c1 or a1) and (c2 or a2) any order)
P1 Allowed in RR but not in SI
Read Uncommitted = Degree 1
PO
Degree 0

37

Snapshot Isolation Implementations

Implementation #1: Timestamp-based
— Example: Spanner, CockroachDB, FoundationDB

Implementation #2: TransactionlD-based
— Example: PostgreSQL, MySQL

38

Timestamp-Based Snapshot Isolation

Timestamp can be either physical or logical
Transaction timestamps: start_ts and commit_ts
Record timestamps: write ts and read ts

« Begin: transaction gets start_ts (monotonically increasing)

 Reads: Aread retrieves the version whose write ts < start ts <read ts, i.e., the
latest version visible at transaction start. This produces the snapshot.

« Commit: The transaction obtains commit_ts > start_ts
* Writes: Create new a version of record with write ts = commit_ts
* Write conflicts: Either pessimistic (locking-based) or optimistic

39

TransactionlD-Based Snapshot Isolation

Key idea: Snapshot is represented as a set of committed transactions. The current
transaction sees writes from all these transactions,

Transaction ID: Each transaction has an XID. These increase steadily
Record: Tagged with the XID of the writing transaction

Begin: System captures |IDs of all committed transactions. This produces the

snapshot.
— Represented as xmin, xmax, xip_list (XIDs of inflight transactions)

Read: A version is visible if XID < xmin OR (XID < xmax AND XID ¢& xip_list)
Write: Tag with the XID of the writing transaction

40

Agenda

ANSI isolation levels
Cursor stability
Snapshot isolation

Complexity of isolation

41

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

@)DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

42

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Why you should pick strong consistency, whenever possible
“Y Google Cloud January 2018

‘ ‘ Systems that don't provide strong consistency ...
create a burden for application developers ’ ’

43

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their ’ ’
own with different degrees of success.

44

ACID: Isolation — Why Strong Isolation?

MongoDB & Bitcoin: How NoSQL design flaws brought down
two exchanges

DZone April 2014

Attackers stole 896 Bitcoins = 17 million US dollars

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their ’ ’
own with different degrees of success.

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) ,.

ACID: Isolation — Why Strong Isolation?

An alternative approach:
Optimize the performance of strong isolation instead of relaxing it

Q: “What is the biggest mistake in your life as an engineer?”
A: (from Jeff Dean) March 2016

‘ ‘ Not putting distributed transactions in BigTable.

In retrospect lots of teams wanted that capability and built their ’ ’
own with different degrees of success.

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) ,.

Q/A — Isolation

Sl in distributed system?
Tradeoff between anomaly prevention and system performance?

What isolation guarantee do you need vs. what you can afford?
What should be the next isolation level or concurrency model?
How was S| extended into Serializable Snapshot Isolation (SSI)?

47

Next Lecture

C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting

Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logqging. ACM Transactions on Database Systems, 1992

— Skip Section 1 and everything after (including) Section 8

— May skip Section 2

— About 25-30 pages to read

48

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aries.pdf

	Slide 1
	Slide 2: Today’s Paper: Isolation
	Slide 3: Agenda
	Slide 4: Long vs. Short Locks
	Slide 5: Degree of Consistency (Isolation)
	Slide 6: Degree of Consistency (Isolation)
	Slide 7: Degree of Consistency (Isolation)
	Slide 8: Degree of Consistency (Isolation)
	Slide 9: Degree of Consistency (Isolation)
	Slide 10: ANSI Isolation Levels
	Slide 11: Notation
	Slide 12: Locking-Based Definition
	Slide 13: Locking-Based Definition
	Slide 14: Locking-Based Definition
	Slide 23: Locking-Based Definition
	Slide 24: Locking-Based Definition
	Slide 25: Locking-Based Definition
	Slide 26: Equivalent Definitions
	Slide 28: Hierarchy of Isolation Levels
	Slide 29: Hierarchy of Isolation Levels
	Slide 30: Agenda
	Slide 31: Cursor Stability
	Slide 32: Agenda
	Slide 33: Snapshot Isolation (SI)
	Slide 34: Snapshot Isolation vs. Serializability
	Slide 35: Snapshot Isolation vs. Serializability
	Slide 36: Snapshot Isolation vs. Serializability
	Slide 37: Hierarchy of Isolation Levels
	Slide 38: Snapshot Isolation Implementations
	Slide 39: Timestamp-Based Snapshot Isolation
	Slide 40: TransactionID-Based Snapshot Isolation
	Slide 41: Agenda
	Slide 42: ACID: Isolation – Why Strong Isolation?
	Slide 43: ACID: Isolation – Why Strong Isolation?
	Slide 44: ACID: Isolation – Why Strong Isolation?
	Slide 45: ACID: Isolation – Why Strong Isolation?
	Slide 46: ACID: Isolation – Why Strong Isolation?
	Slide 47: Q/A – Isolation
	Slide 48: Next Lecture

