
Xiangyao Yu

11/13/2025

CS 764: Topics in Database Management Systems

Lecture 21: ARIES

1

Today’s Paper: ARIES

ACM Trans. Database Syst. 1992.
2

Agenda

3

Durability

Write ahead logging

– Force vs. No Force

– Steal vs. No Steal

ARIES logging

Durability

4

Durability: The database must recover to a valid state no matter

when a crash occurs

• Committed transactions should persist

• Uncommitted transactions should roll back

Durability

5

Durability: The database must recover to a valid state no matter

when a crash occurs

• Committed transactions should persist

• Uncommitted transactions should roll back

Desired Behavior after system restarts
• T1, T2 should recover

• T3, T4 should be aborted

T1

T2

T3

T4

crash

CB

CB

B

B

Write-Ahead Logging (WAL)

6

Before a transaction commits, its modifications must persist

Before writing dirty data to disk, rollback information must persist

Processor

Disk
DRAM

Page

Log

Write-Ahead Logging (WAL)

7

Before a transaction commits, its modifications must persist

Before writing dirty data to disk, rollback information must persist

Write-ahead logging: changes are written to the log before updating the

database tables

– Writing to log incurs sequential IO

Processor

Disk
DRAM

Page

Log

Buffer Management Policy

8

No Steal: Dirty pages stay in DRAM until the transaction commits

Buffer Management Policy

9

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits

• Advantage: other transactions can use the buffer slot in DRAM

• Challenge: system crashes after flushing dirty pages but before the

transaction commits

 => Dirty data on disk

• Solution: UNDO logging before each update

Buffer Management Policy

10

Force: All dirty pages must be flushed when the transaction commits

Buffer Management Policy

11

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits

• Advantage: reduce # random IO

• Challenge: system crashes after the transaction commits but before the dirty

pages are flushed

=> missing updates from committed transactions

• Solution: REDO logging before each update

Buffer Management Policy

12

Steal No Steal

Force UNDO only No REDO nor

UNDO

No Force REDO and

UNDO logging

REDO only

Buffer Management Policy

13

Steal No Steal

Force UNDO only No REDO nor

UNDO

No Force REDO and

UNDO logging

REDO only

ARIES

Buffer Management Policy

14

Steal No Steal

Force UNDO only No REDO nor

UNDO

No Force REDO and

UNDO logging

REDO only

ARIES Large memory

Buffer Management Policy

15

Steal No Steal

Force UNDO only No REDO nor

UNDO

No Force REDO and

UNDO logging

REDO only

Non-volatile memory DB

ARIES Large memory

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:
– Forward scan of entire log: redo all

records

– Backward scan of entire log: undo
uncommitted transactions

16

Data structures
Log entry

– (LSN), txnID, pageID, data

Data page

– Tuple data

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:
– Forward scan of entire log: redo all

records

– Backward scan of entire log: undo
uncommitted transactions

17

Data structures
Log entry

– (LSN), txnID, pageID, data

Data page

– Tuple data

which transactions have not

committed?

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:
– Forward scan of entire log: redo all

records; keep a table for active
transactions

– Backward scan of entire log: undo
uncommitted transactions

18

Data structures

(Active) Transaction Table

– TransID

Log entry

– (LSN), txnID, pageID, data

Data page

– Tuple data

Limitation of the Baseline Design

Inefficiency in the REDO process
– Unnecessary to redo all records

– Need to redo only records that are not reflected in data pages

19

Limitation of the Baseline Design

Inefficiency in the REDO process
– Unnecessary to redo all records

– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log

– Need to undo only records of uncommitted transactions

20

Limitation of the Baseline Design

Inefficiency in the REDO process
– Unnecessary to redo all records

– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log

– Need to undo only records of uncommitted transactions

Lack of checkpointing
– Unnecessary to start from the beginning of log

– Start with the first log record that is not reflected in data pages

21

Optimize REDO Process

Inefficiency in the REDO process
– Unnecessary to redo all records

– Need to redo only records that are not reflected in
the data page

22

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table

– TransID

Data page

– Tuple data

Optimize REDO Process

Inefficiency in the REDO process
– Unnecessary to redo all records

– Need to redo only records that are not reflected in
the data page

Solution: add a version number to each page
– pageLSN: LSN of the log record that describes

the latest update to the page.

– REDO scan: Apply REDO only if record.LSN >
page.pageLSN

– Write: update pageLSN (for the buffered page) for
each write

23

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table

– TransID

Data page

– Tuple data

– pageLSN

Optimize UNDO Process

Inefficiency in the UNDO process
– Unnecessary to scan the entire log

– Need to undo only records of uncommitted
transactions

24

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table

– transID

Data page

– tuple data

– pageLSN

Optimize UNDO Process

Inefficiency in the UNDO process
– Unnecessary to scan the entire log

– Need to undo only records of uncommitted
transactions

Solution: link records from the same transaction
– prevLSN: preceding log record written by the same

transaction

– lastLSN: LSN of the last log record written by the
transaction

– UNDO scan: Follow lastLSN and prevLSN to undo
records

– REDO scan: update lastLSN in Transaction Table
based on the last update of the transaction

25

Data structures
Log entry

– (LSN), txnID, pageID, data

– prevLSN

(Active) Transaction Table

– transID

– lastLSN

Data page

– tuple data

– pageLSN

Checkpoint

Lack of checkpointing
– Unnecessary to start from the beginning of log

– Start with the first log record that is not reflected in
data pages

26

Data structures
Log entry

– (LSN), txnID, pageID, data

– prevLSN

(Active) Transaction Table

– transID

– lastLSN

Data page

– tuple data

– pageLSN

Checkpoint

Lack of checkpointing
– Unnecessary to start from the beginning of log

– Start with the first log record that is not reflected in
data pages

Solution: Maintain a dirty page table
– pageID: ID of the dirty page

– recLSN: LSN of the first log record since when the
page is dirty

– Fuzzy Checkpoint: log DPT and TT
asynchronously

– REDO scan: start from the smallest LSN in DPT

27

Data structures
Log entry

– (LSN), txnID, pageID, data

– prevLSN

(Active) Transaction Table

– transID

– lastLSN

Data page

– tuple data

– pageLSN

Dirty Page Table

– pageID

– recLSN

Compensation Log Record (CLR)

The action of applying UNDO leads to a CLR
– In undo scan, do not reapply UNDO if CLR exists

– UndoNxtLSN: LSN of the next record to be
processed during undo scan

28

Data structures
Log entry

– (LSN), txnID, pageID, data

– prevLSN

– UndoNxtLSN

(Active) Transaction Table

– transID

– lastLSN

– UndoNxtLSN

Data page

– tuple data

– pageLSN

Dirty Page Table

– pageID

– recLSN

ARIES – Big Picture

29

Goal: Bring the database to the state before the

crash (REDO phase) and rollback uncommitted

transactions (UNDO phase)

ARIES – Big Picture

30

Goal: Bring the database to the state before the

crash (REDO phase) and rollback uncommitted

transactions (UNDO phase)

Start from the last complete checkpoint

– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for

redo phase)

– REDO phase: redo transactions whose

effects may not be persistent before the

crash

– UNDO phase: undo transactions that did

not commit before the crash

ARIES – Big Picture

31

Oldest log rec. of

active transactions

at crash

Smallest recLSN in

dirty page table

after Analysis

Last chkpt

CRASH

A R U

Goal: Bring the database to the state before the

crash (REDO phase) and rollback uncommitted

transactions (UNDO phase)

Start from the last complete checkpoint

– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for

redo phase)

– REDO phase: redo transactions whose

effects may not be persistent before the

crash

– UNDO phase: undo transactions that did

not commit before the crash

Crash Recovery – Analysis Phase

32

Goal: Rebuild transaction table (for undo phase) and dirty page table

(for redo phase) based on the ones in the last checkpoint

Crash Recovery – Analysis Phase

33

Goal: Rebuild transaction table (for undo phase) and dirty page table

(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

– If ‘update’ or ‘CLR’: insert to transaction table if not exists

– If ‘end’: delete from transaction table

Crash Recovery – Analysis Phase

34

Goal: Rebuild transaction table (for undo phase) and dirty page table

(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

– If ‘update’ or ‘CLR’: insert to transaction table if not exists

– If ‘end’: delete from transaction table

(update dirty page table) For each log record:

– If ‘update’ or ‘CLR’: insert to dirty page table if not exists (PageID, RecLSN)

Analysis Phase – Example

35

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

PageID RecLSN

Analysis Phase – Example

36

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T1 10

PageID RecLSN

P5 10

Analysis Phase – Example

37

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T1 10

T2 20

PageID RecLSN

P5 10

P3 20

Analysis Phase – Example

38

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T1 10

T2 20

PageID RecLSN

P5 10

P3 20

Analysis Phase – Example

39

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 20

PageID RecLSN

P5 10

P3 20

P1 50

Analysis Phase – Example

40

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

Crash Recovery – REDO Phase

41

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Crash Recovery – REDO Phase

42

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table

– Before this LSN, all redo records have been reflected in data pages on disk

Crash Recovery – REDO Phase

43

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table

– Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

– The page is not in dirty page table (DPT)

– The page is in DPT but redo_record.LSN < DPT[page].recLSN

– After fetching the data page, redo_record.LSN ≤ page.page_LSN

REDO Phase – Example

44

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

PageID Page_LSN

P5 40

P3 0

P1 0

Data pages

No need to update

Write already

reflected on disk

REDO Phase – Example

45

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

PageID Page_LSN

P5 40

P3 0

P1 0

Data pages

Update P3 in

buffer pool

No need to flush

P3 now

REDO Phase – Example

46

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

PageID Page_LSN

P5 40

P3 0

P1 0

Data pages

No need to update

Write already

reflected on disk

REDO Phase – Example

47

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

PageID Page_LSN

P5 40

P3 0

P1 0

Data pages

Update P1 in

buffer pool

No need to flush

P1 now

REDO Phase – Example

48

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

Dirty page table

TransID LastLSN

T3 50

T2 60

PageID RecLSN

P5 10

P3 20

P1 50

PageID Page_LSN

P5 40

P3 0

P1 0

Data pages

Update P5 in

buffer pool

No need to flush

P5 now

Crash Recovery – UNDO Phase

49

Rollback uncommitted transactions

Crash Recovery – UNDO Phase

50

Rollback uncommitted transactions

Repeat until transaction table is empty:

– Choose largest LastLSN among transactions in the transaction table

– If the log record is an ‘update’: Undo the update, write a CLR, add

record.prevLSN to transaction table

– If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table

– If prevLSN and UpdoNxtLSN are NULL, remove the transaction from

transaction table

UNDO Phase – Example

51

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T3 50 50

T2 60 60

UNDO Phase – Example

52

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T3 50 50

T2 60 70 60 20

LSN LOG (undoNextLSN)

70 CLR: Undo T2, LSN 60, (20)

UNDO Phase – Example

53

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T3 50 80 50 null

T2 70 20

LSN LOG (undoNextLSN)

70 CLR: Undo T2, LSN 60, (20)

80 CLR: Undo T3, LSN 50, (null)

UNDO Phase – Example

54

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T3 80 null

T2 70 20

LSN LOG (undoNextLSN)

70 CLR: Undo T2, LSN 60, (20)

80 CLR: Undo T3, LSN 50, (null)

85 T3 End

UNDO Phase – Example

55

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T2 70 90 20 null

LSN LOG (undoNextLSN)

70 CLR: Undo T2, LSN 60, (20)

80 CLR: Undo T3, LSN 50, (null)

85 T3 End

90 CLR: Undo T2, LSN 20, (null)

UNDO Phase – Example

56

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

 05

 10

 20

 30

 40

 45

 50

 60

Transaction Table

TransID LastLSN UndoNxtLSN

T2 90 null

LSN LOG (undoNextLSN)

70 CLR: Undo T2, LSN 60, (20)

80 CLR: Undo T3, LSN 50, (null)

85 T3 End

90 CLR: Undo T2, LSN 20, (null)

95 T2 End

Crash During Restart – Example

57

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG

00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

CLR: Undo T2 LSN 20, T2 end90

No need to undo LSN 60 and

LSN 50 again due to the CLRs

created in the previous restart

Can created a checkpoint to

reduce the cost of future restart

Q/A – ARIES

58

Modern storage and cloud changing the relevance of ARIES?

Distributed system where logs are decentralized?

Can logical be better than physiological logging?

Log itself is corrupted?

Next Lecture

C. Mohan, et al., Transaction Management in the R* Distributed
Database Management System. ACM Transactions on Database
Systems, 1986

59

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/R-XactMgmt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/R-XactMgmt.pdf

	Slide 1
	Slide 2: Today’s Paper: ARIES
	Slide 3: Agenda
	Slide 4: Durability
	Slide 5: Durability
	Slide 6: Write-Ahead Logging (WAL)
	Slide 7: Write-Ahead Logging (WAL)
	Slide 8: Buffer Management Policy
	Slide 9: Buffer Management Policy
	Slide 10: Buffer Management Policy
	Slide 11: Buffer Management Policy
	Slide 12: Buffer Management Policy
	Slide 13: Buffer Management Policy
	Slide 14: Buffer Management Policy
	Slide 15: Buffer Management Policy
	Slide 16: Baseline REDO/UNDO Design
	Slide 17: Baseline REDO/UNDO Design
	Slide 18: Baseline REDO/UNDO Design
	Slide 19: Limitation of the Baseline Design
	Slide 20: Limitation of the Baseline Design
	Slide 21: Limitation of the Baseline Design
	Slide 22: Optimize REDO Process
	Slide 23: Optimize REDO Process
	Slide 24: Optimize UNDO Process
	Slide 25: Optimize UNDO Process
	Slide 26: Checkpoint
	Slide 27: Checkpoint
	Slide 28: Compensation Log Record (CLR)
	Slide 29: ARIES – Big Picture
	Slide 30: ARIES – Big Picture
	Slide 31: ARIES – Big Picture
	Slide 32: Crash Recovery – Analysis Phase
	Slide 33: Crash Recovery – Analysis Phase
	Slide 34: Crash Recovery – Analysis Phase
	Slide 35: Analysis Phase – Example
	Slide 36: Analysis Phase – Example
	Slide 37: Analysis Phase – Example
	Slide 38: Analysis Phase – Example
	Slide 39: Analysis Phase – Example
	Slide 40: Analysis Phase – Example
	Slide 41: Crash Recovery – REDO Phase
	Slide 42: Crash Recovery – REDO Phase
	Slide 43: Crash Recovery – REDO Phase
	Slide 44: REDO Phase – Example
	Slide 45: REDO Phase – Example
	Slide 46: REDO Phase – Example
	Slide 47: REDO Phase – Example
	Slide 48: REDO Phase – Example
	Slide 49: Crash Recovery – UNDO Phase
	Slide 50: Crash Recovery – UNDO Phase
	Slide 51: UNDO Phase – Example
	Slide 52: UNDO Phase – Example
	Slide 53: UNDO Phase – Example
	Slide 54: UNDO Phase – Example
	Slide 55: UNDO Phase – Example
	Slide 56: UNDO Phase – Example
	Slide 57: Crash During Restart – Example
	Slide 58: Q/A – ARIES
	Slide 59: Next Lecture

