WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 21: ARIES

Xiangyao Yu
11/13/2025

Today’s Paper: ARIES

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARIES (Algorithm for Recovery
and Isolation Exploiting Semantics), which supports partial rollbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before performing the rollbacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks. By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, selective and deferred restart, fuzzy image copies, media recovery, and high
concurrency lock modes (e.g., increment/decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, page-oriented redo, and
logical undo. it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL. We compare ARIES to the WAL-based recovery methods of

ACM Trans. Database Syst. 1992.

Agenda

Durabillity

Write ahead logging
— Force vs. No Force
— Steal vs. No Steal

ARIES logging

Durability

Durability: The database must recover to a valid state no matter
when a crash occurs

« Committed transactions should persist

« Uncommitted transactions should roll back

Durability

Durability: The database must recover to a valid state no matter

when a crash occurs

« Committed transactions should persist
 Uncommitted transactions should roll back

Desired Behavior after system restarts

 T1, T2 should recover

T3, T4 should be aborted

B
TZB e |

Write-Ahead Logging (WAL)

Before a transaction commits, its modifications must persist
Before writing dirty data to disk, rollback information must persist

Processor

Page
DRAM

Write-Ahead Logging (WAL)

Before a transaction commits, its modifications must persist
Before writing dirty data to disk, rollback information must persist

Write-ahead logging: changes are written to the log before updating the
database tables
— Writing to log incurs sequential 10

Processor

Page
DRAM

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
« Advantage: other transactions can use the buffer slot in DRAM

« Challenge: system crashes after flushing dirty pages but before the
transaction commits

=> Dirty data on disk
« Solution: UNDO logging before each update

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

10

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
« Advantage: reduce # random 1O

* Challenge: system crashes after the transaction commits but before the dirty
pages are flushed

=> missing updates from committed transactions
« Solution: REDO logging before each update

11

Buffer Management Policy

UNDO logging

Steal No Steal
Force UNDO only No REDO nor
UNDO
No Force | REDO and REDO only

12

Buffer Management Policy

No Force REDO and

Steal No Steal
Force UNDO only No REDO nor
UNDO

UNDO logging

REDO only

ARIES

13

Buffer Management Policy

Steal No Steal
Force UNDO only No REDO nor
UNDO
No Force [REDO and 'REDO only
UNDO logging

ARIES Large memory

Buffer Management Policy

Steal No Steal

Force [UNDO only No REDO nor
UNDO

Non-volatile memory DB

No Force |REDO and REDO only
UNDO logging

ARIES Large memory

15

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:

— Forward scan of entire log: redo all
records

— Backward scan of entire log: undo
uncommitted transactions

Data structures

Log entry |
— (LSN), txnID, pagelD, data :

__

: Data page
' — Tuple data

16

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:

— Forward scan of entire log: redo all
records

— Backward scan of entire log: undo
uncommitted transactions

Data structures

Log entry |
— (LSN), txnID, pagelD, data :

__

: Data page
' — Tuple data

which transactions have not
committed?

17

Baseline REDO/UNDO Design

Write: Write REDO/UNDO to log;
update the page

Commit: Write COMMIT to log

Recovery:

— Forward scan of entire log: redo all
records; keep a table for active
transactions

— Backward scan of entire log: undo
uncommitted transactions

Data structures

Log entry |
— (LSN), txnID, pagelD, data :

__

: Data page
' — Tuple data

(Active) Transaction Table
: — TranslID

__

18

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

19

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process

— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

20

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process

— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

Lack of checkpointing

— Unnecessary to start from the beginning of log
— Start with the first log record that is not reflected in data pages

21

Optimize REDO Process

Inefficiency in the REDO process _Data structures

— Unnecessary to redo all records Log entry ;

— Need to redo only records that are not reflected in _(LSN)txnleagelDdata
the data page ' Data page

— Tuple data

' (Active) Transaction Table
! — TranslD

22

Optimize REDO Process

Inefficiency in the REDO process
— Unnecessary to redo all records

— Need to redo only records that are not reflected in
the data page

Solution: add a version number to each page

— pageLSN: LSN of the log record that describes
the latest update to the page.

— REDO scan: Apply REDO only if record.LSN >
page.pageLSN

— Write: update pagelL SN (for the buffered page) for
each write

Data structures

. Log entry :
. — (LSN), txnID, pagelD, data !

__

' Data page
| — Tuple data
— pageLSN

' (Active) Transaction Table
! — TranslD

23

Optimize UNDO Process

Inefficiency in the UNDO process _Data structures
— Unnecessary to scan the entire log : Log e”t{l_/SN) D D. data |
. ' - , IXnID, pagelD, aata .
— Need to undo only records of uncommitted : Pas ;
transactions I
' Data page
| — tuple data
— pagelLSN

| (Active) Transaction Table
— transiID

24

Optimize UNDO Process

Inefficiency in the UNDO process ~ Data structures
— Unnecessary to scan the entire log E'—OQ e”trl_/SN - D. dat §
— Need to undo only records of uncommitted o fore\,.i’s,ﬁn PRGEE, S
transactions
‘Datapage
Solution: link records from the same transaction | - tuledata ,
- prevLSN: preceding log record written by the same = —P2%%N
transaction ' (Active) Transaction Table
— lastLSN: LSN of the last log record written by the | — transiD
transaction . TflastlSN
— UNDO scan: Follow lastLSN and prevLSN to undo
records

— REDO scan: update lastLSN in Transaction Table
based on the last update of the transaction

25

Checkpoint

Lack of checkpointing Data structures

— Unnecessary to start from the beginning of log Log e”trl_/SN D D data
— Start with the first log record that is not reflected in | _ érevL)’S,\),m PRgET, A9

data pages

' Data page
' — tuple data
— pagelLSN

__

' (Active) Transaction Table
— transiID
— lastLSN

__

26

Checkpoint

Lack of checkpointing
— Unnecessary to start from the beginning of log

— Start with the first log record that is not reflected in
data pages

Solution: Maintain a dirty page table
— pagelD: ID of the dirty page
—recLSN: LSN of the first log record since when the
page is dirty
— Fuzzy Checkpoint: log DPTand TT
asynchronously
— REDO scan: start from the smallest LSN in DPT

Data structures

' Log entry ,
| — (LSN), txnID, pagelD, data
— prevLSN !

' Data page
| — tuple data
— pagelLSN

__

' (Active) Transaction Table
— transiID
— lastLSN

__

: Dirty Page Table
' — pagelD
— recLSN

__

Compensation Log Record (CLR)

Before Failure

1 2 3 3 2
Log 4T i & /r —®
N\ \-.‘____d /
~ 7

— . m am - -

I’ is the Compensation Log Record for [
I’ points to the predecessor, if amy, of I

The action of applying UNDO leads to a CLR

— In undo scan, do not reapply UNDO if CLR exists
— UndoNxtLSN: LSN of the next record to be

processed during undo scan

Data structures

 Log entry |
' — (LSN), txnID, pagelD, data !

— prevLSN I
— UndoNxtLSN

' Data page
| — tuple data
— pageLSN

i (Active) Transaction Table
— translID
— lastLSN

__

' Dirty Page Table
| — pagelD
— recLSN

__

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

29

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint

— Analysis phase: rebuild transaction table
(for undo phase) and dirty page table (for
redo phase)

— REDO phase: redo transactions whose
effects may not be persistent before the
crash

— UNDO phase: undo transactions that did

not commit before the crash 30

ARIES — Big Picture

Oldest log rec. of
active transactions "‘
at crash

Smallest recLSN in =
dirty page table
after Analysis

Last chkpt ——

CRASH

A

U

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint

— Analysis phase: rebuild transaction table
(for undo phase) and dirty page table (for
redo phase)

— REDO phase: redo transactions whose
effects may not be persistent before the
crash

— UNDO phase: undo transactions that did

not commit before the crash 31

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

32

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
— If ‘'update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

33

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
— If ‘'update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

(update dirty page table) For each log record:
— If ‘'update’ or ‘CLR’: insert to dirty page table if not exists (PagelD, RecLSN)

34

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Transaction Table

TransID | LastLSN
Dirty page table
PagelD RecLSN

35

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes P5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Transaction Table

TransID | LastLSN
T1 10

Dirty page table
PagelD RecLSN
P5 10

36

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20 —'— update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

M >< CRASH, RESTART

Transaction Table

TransID | LastLSN
T1 10
T2 20

Dirty page table
PagelD RecLSN
PS5 10
P3 20

37

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 -+ T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Transaction Table

TransID | LastLSN
T1 45
T2 20

Dirty page table
PagelD RecLSN
PS5 10
P3 20

38

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Transaction Table

TransID | LastLSN
T3 50
T2 20
Dirty page table
PagelD RecLSN
PS5 10
P3 20
P1 50

39

Analysis Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5
v >< CRASH, RESTART

Transaction Table

TransID | LastLSN
T3 50
T2 60
Dirty page table
PagelD RecLSN
PS5 10
P3 20
P1 50

40

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

41

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?

— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

42

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?

— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

— The page is not in dirty page table (DPT)

— The page is in DPT but redo_record.LSN < DPT[page].recLSN

— After fetching the data page, redo _record.LSN < page.page LSN

43

REDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes P5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Dirty page table

PagelD RecLSN

PS5 10

P3 20

P1 50 No need to update
Data pages Write already
PagelD |Page LSN| reflected on disk
P5 40

P3 0

P1 0 44

REDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20 —'— update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

M >< CRASH, RESTART

Dirty page table
PagelD RecLSN
PS5 10
P3 20
P1 50

Data pages
PagelD Page LSN
P5 40
P3 0
P1 0

Update P3 in
buffer pool

No need to flush
P3 now

45

REDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Dirty page table

PagelD RecLSN

PS5 10

P3 20

P1 50 No need to update
Data pages Write already
PagelD |Page LSN| reflected on disk
P5 40

P3 0

P1 0 46

REDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5

v >< CRASH, RESTART

Dirty page table
PagelD RecLSN
PS5 10
P3 20
P1 50

Data pages
PagelD Page LSN
P5 40
P3 0
P1 0

Update P1 in
buffer pool

No need to flush
P1 now

47

REDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5
20—+ update: T2 writes P3
30 - T1 abort

40 -~ CLR: Undo T1 LSN 10
45— T1 End

50 —-— update: T3 writes P1
60 — update: T2 writes P5
v >< CRASH, RESTART

Dirty page table

PagelD RecLSN

PS5 10

P3 20

P1 50 Update P5 in
buffer pool

Data pages

PagelD |Page LSN| Noneed toflush

P5 40 P5 now

P3 0

P1 0

48

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

49

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

Repeat until transaction table is empty:
— Choose largest LastLSN among transactions in the transaction table

— If the log record is an ‘update’: Undo the update, write a CLR, add
record.prevLSN to transaction table

— If the log record is an ‘CLR’": add CLR.UndoNxtLSN to transaction table

— If prevLSN and UpdoNxtLSN are NULL, remove the transaction from
transaction table

50

UNDO Phase — Example

LSN LOG

~ 00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5

20 —'— update T2 writes P3

30 - T1 abort

40 -~ CLR: Undo T1 LSN 10

45— T1 End

50 —-— update: T3 writes P1

60 — update: T2 writes P5
X CRASH, RESTART

Transaction Table

TransID LastLSN | UndoNxtLSN
T3 50 50
T2 60 60

51

UNDO Phase — Example

LSN LOG Transaction Table
TransID LastLSN | UndoNxtLSN
.~ 00 —-— begin _checkpoint T3 50 50
05 — end_checkpoint T2 60 70 60 20

10 — update: T1 writes PS5

20 —'— update T2 writes P3
30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: 70 CLR:Undo T2, LSN 60, (20)
40 -+ CLR: Undo T1 LSN 10

45—~ T1 End

50 —-— update: T3 writes P1

60 —— update: T2 writes P5
>:< CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
: TransID | LastLSN | UndoNxtLSN
L~ 00 —-— begin_checkpoint T3 50 80 50 null
05 —-— end_checkpoint T2 70 20

10 — update: T1 writes PS5
20 —'— update T2 writes P3

30 - T1 abort LSN LOG (undoNextLSN)

: | 70 CLR:Undo T2,LSN 60, (20)
40 - CLR:Undo T1LSN 10 80 CLR:UndoT3,LSN 50, (null)
45—~ T1 End

50 —=— update: T3 writes P1
60 — update: T2 writes P5
>X CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
: TransID | LastLSN | UndoNxtLSN
L~ 00 —-— begin_checkpoint T3 80 Aull
05 —-— end_checkpoint T2 70 20

10 — update: T1 writes PS5
20 —'— update T2 writes P3

30 - T1 abort LSN LOG (undoNextLSN)

: | 70 CLR:Undo T2,LSN 60, (20)
40 - CLR:Undo T1LSN 10 80 CLR:UndoT3,LSN 50, (null)
45—~ T1 End 85 T3 End

50 —— update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART

UNDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5

20 —'— update T2 writes P3

30 - T1 abort

40 -~ CLR: Undo T1 LSN 10

45— T1 End

50 —-— update: T3 writes P1

60 — update: T2 writes P5
>:< CRASH, RESTART

Transaction Table

TransID LastLSN | UndoNxtLSN

T2 70 90 20 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR:Undo T3, LSN 50, (null)
85 T3 End

90 CLR:Undo T2, LSN 20, (null)

55

UNDO Phase — Example

LSN LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes PS5

20 —'— update T2 writes P3

30 - T1 abort

40 -~ CLR: Undo T1 LSN 10

45— T1 End

50 —-— update: T3 writes P1

60 — update: T2 writes P5
>:< CRASH, RESTART

Transaction Table

TransID LastLSN | UndoNxtLSN

T2 o]a] nul

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR:Undo T3, LSN 50, (null)
85 T3 End

90 CLR:Undo T2, LSN 20, (null)
95 T2 End

56

Crash During Restart — Example

LSN LOG

00,05—?— begin_checkpoint, end_checkpoint No need to l_'mdo LSN 60 and
10 — update: T1 writes P5 LSN 50 again due to the CLRs
20 _._ update T2 writes P3 created in the previous restart
30 - T1 abort

40,45—5— CLR:Undo T1 LSN 10, T1 End C tod heckboint t
50 —- update: T3 writes P1 an created a checkpoint 1o

60— update: T2 writes P5 reduce the cost of future restart

» CRASH, RESTART
70—+ CLR: Undo T2 LSN 60
80,85 — CLR: Undo T3 LSN 50, T3 end

> CRASH, RESTART
90 —-CLR:Undo T2LSN 20, T2 end

Q/A — ARIES

Modern storage and cloud changing the relevance of ARIES?
Distributed system where logs are decentralized?

Can logical be better than physiological logging?

Log itself is corrupted?

58

Next Lecture

C. Mohan, et al., Transaction Management in the R* Distributed
Database Management System. ACM Transactions on Database
Systems, 1986

59

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/R-XactMgmt.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/R-XactMgmt.pdf

	Slide 1
	Slide 2: Today’s Paper: ARIES
	Slide 3: Agenda
	Slide 4: Durability
	Slide 5: Durability
	Slide 6: Write-Ahead Logging (WAL)
	Slide 7: Write-Ahead Logging (WAL)
	Slide 8: Buffer Management Policy
	Slide 9: Buffer Management Policy
	Slide 10: Buffer Management Policy
	Slide 11: Buffer Management Policy
	Slide 12: Buffer Management Policy
	Slide 13: Buffer Management Policy
	Slide 14: Buffer Management Policy
	Slide 15: Buffer Management Policy
	Slide 16: Baseline REDO/UNDO Design
	Slide 17: Baseline REDO/UNDO Design
	Slide 18: Baseline REDO/UNDO Design
	Slide 19: Limitation of the Baseline Design
	Slide 20: Limitation of the Baseline Design
	Slide 21: Limitation of the Baseline Design
	Slide 22: Optimize REDO Process
	Slide 23: Optimize REDO Process
	Slide 24: Optimize UNDO Process
	Slide 25: Optimize UNDO Process
	Slide 26: Checkpoint
	Slide 27: Checkpoint
	Slide 28: Compensation Log Record (CLR)
	Slide 29: ARIES – Big Picture
	Slide 30: ARIES – Big Picture
	Slide 31: ARIES – Big Picture
	Slide 32: Crash Recovery – Analysis Phase
	Slide 33: Crash Recovery – Analysis Phase
	Slide 34: Crash Recovery – Analysis Phase
	Slide 35: Analysis Phase – Example
	Slide 36: Analysis Phase – Example
	Slide 37: Analysis Phase – Example
	Slide 38: Analysis Phase – Example
	Slide 39: Analysis Phase – Example
	Slide 40: Analysis Phase – Example
	Slide 41: Crash Recovery – REDO Phase
	Slide 42: Crash Recovery – REDO Phase
	Slide 43: Crash Recovery – REDO Phase
	Slide 44: REDO Phase – Example
	Slide 45: REDO Phase – Example
	Slide 46: REDO Phase – Example
	Slide 47: REDO Phase – Example
	Slide 48: REDO Phase – Example
	Slide 49: Crash Recovery – UNDO Phase
	Slide 50: Crash Recovery – UNDO Phase
	Slide 51: UNDO Phase – Example
	Slide 52: UNDO Phase – Example
	Slide 53: UNDO Phase – Example
	Slide 54: UNDO Phase – Example
	Slide 55: UNDO Phase – Example
	Slide 56: UNDO Phase – Example
	Slide 57: Crash During Restart – Example
	Slide 58: Q/A – ARIES
	Slide 59: Next Lecture

