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Lecture 22: Two-Phase Commit (2PC)
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Today’s Paper: Distributed Transactions in R*

ACM Trans. Database Syst. 1986.
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VLDB 2022



Agenda
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Two-phase commit

• Presumed abort (PA)

• Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation 



Distributed Transactions
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Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions

Network

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Nothing

tuple A tuple B

Transaction T:

      write(A)

      write(B)



Atomic Commit Protocol (ACP)
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Atomic commit protocol: all partitions reach the same commit or 

abort decision of a transaction

tuple A tuple B

Transaction T:

      write(A)

      write(B)

The two updates must commit or abort atomically

Example:



The Challenge of Atomic Commit
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A naïve approach: all nodes log and commit independently

tuple A tuple B

Transaction T:

      write(A)

      write(B)

Log and 
commit

Commit

Log and 

commit

Node 1 Node 2

back to caller



The Challenge of Atomic Commit
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A naïve approach: all nodes log and commit independently

Node 2 crashes before logging 

• Transaction T commits in node 1 but not in node 2

tuple A tuple B

Transaction T:

      write(A)

      write(B)

Commit

Log and 

commit

Node 1 Node 2



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B
Key idea: let the coordinator log the 

final commit/abort decision

Subordinate 1



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B
Key idea: let the coordinator log the 

final commit/abort decision

Phase 1: prepare phaseSubordinate 1

[log] 
prepare*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

[log] 
prepare*

[log]
commit*

PREPARE

VOTE YES

[log] 
prepare*

VOTE YES

PREPARE

Key idea: let the coordinator log the 

final commit/abort decision

Phase 1: prepare phase

Phase 2: commit phase
• Coordinator logs the decision

back to caller



Two-Phase Commit (2PC)
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Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

back to caller

[log] 
prepare*

[log]
commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

[log] 
prepare*

VOTE YES

ACK

[log]
commit*

PREPARE

[log]
commit*

Key idea: let the coordinator log the 

final commit/abort decision

Phase 1: prepare phase

Phase 2: commit phase
• Coordinator logs the decision

• Coordinator sends the decision to 

subordinates

• Coordinator forgets the transaction 

after receiving ACKs



2PC – Abort Example
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abort*

Coord Subord1

PREPARE

VOTE NO

Subordinate returns VOTE NO if 
the transaction is aborted

• Subordinate can release locks 
and forget the transaction

Subord2

prepare*

VOTE YES



2PC – Abort Example
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back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Subordinate returns VOTE NO if 
the transaction is aborted

• Subordinate can release locks 
and forget the transaction

Skip the commit phase for 
aborted subordinates



2PC – All Subordinates Abort
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back to caller

abort*

abort* + end

PREPARE

VOTE NO

forget the txn

Skip the second phase entirely if 
the transaction aborts at all the 
subordinates

abort*

VOTE NO

Coord Subord1 Subord2



2PC – Failures

15

Use timeout to detect failures

Subordinate timeout 
• Waiting for PREPARE: self abort

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Time out

Coord Subord



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Coordinator timeout
• Waiting for vote: self abort

Time out



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Subordinate timeout 
• Waiting for decision: contact 

coordinator or peer subordinates 
(may block until the coordinator 
recovers)Time out



2PC – Failures
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back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Coordinator timeout
• Waiting for ACK: contact 

subordinates

Time out



2PC – Alternative Designs?
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Subordinate returns vote to 
coordinator before logging 
prepare?

back to caller

prepare

commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Subordinate returns vote to 
coordinator before logging 
prepare?

Problem: subordinate may 
crash before the log record is 
written to disk. The log record is 
thus lost but the coordinator 
already committed the 
transaction

back to caller

prepare

commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Coordinator sends decision to 
subordinates before logging the 
decision?

back to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



2PC – Alternative Designs?
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Coordinator sends decision to 
subordinates before logging the 
decision?

Problem: coordinator crashes 
before logging the decision and 
decides to abort after restartback to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord



Optimization 1: Presumed Abort (PA)
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Observation: It is safe for a coordinator to “forget” a transaction 
immediately after it makes the decision to abort it and to write an 
abort record 



PA: Aborted Transaction
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Coord Subord1 Subord2

back to 

caller
abort

PREPARE

VOTE NO prepare*abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate



PA: Aborted Transaction
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Coord Subord1 Subord2

back to 

caller
abort

abort

abort
ABORT

PREPARE

forget 

the txn

prepare*

VOTE YES

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate

• The abort record is not forced in coordinator

• Coordinator forgets the transaction early

• No ACK for aborts

• Behavior of committed transactions unchanged

VOTE NO



PA: Partially Readonly Transactions
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back to caller

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE READ

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Readonly subordinate does not log in prepare phase and skips commit phase



PA: Completely Readonly Transactions
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back to caller

Coord Subord1

PREPARE

VOTE READ

forget the txn

Subord2

VOTE READ

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Completely readonly transactions skip the commit phase entirely



Optimization 2: Presumed Commit (PC)
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Since most transactions are expected to commit, can we make 
commits cheaper by eliminating the ACKs for COMMITS? 



PC: Committed Transaction 
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Coord Subord1 Subord2

prepare*

PREPARE

VOTE YES
prepare*

VOTE YES

collecting*

back to caller

commit*

commit

COMMIT

commit

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Need to force log collecting due to potential abort of coordinator

No need to send ACK for COMMITS



PC: Aborted Transaction 
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abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

collecting*

back to caller

abort*

abort*

COMM IT

end

forget the txn

ACK

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Abort behavior is similar to standard 2PC but requires logging collecting



Summary
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Presumed Abort (PA) is better than standard 2PC (widely used in practice)

Presumed Commit (PC) is worse than PA in most cases



Agenda
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Two-phase commit

• Presumed abort (PA)

• Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation 



Limitations of 2PC

Limitation #1: Long latency
– User experiences latency of two logging 

operations 

Limitation #2: Blocking problem
– Participants are blocked if the coordinator 

fails 

33

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

fail

Block 

until 

coordinat

or 

recovers!

timeout timeout

timeout timeout



2PC Limitations – Prior Solutions
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[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993

[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995

[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006

[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013

[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020

[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018

Solutions 

Reduce latency

Non-blocking

Codesign 2PC 

with replication

Example systems

Coordinator log [1]

Implicit yes vote [2]

Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]

MDCC [6]

Parallel commit [7]

TAPIR [8] 

Limitations in prior solutions

• Extra system or workload 

assumptions

• Violate site autonomy 

• Requires extra latency and/or 

network messages 

• Extra design complexity 

• Custom-designed consensus protocol 



Rethink 2PC with Storage Disaggregation

In shared-nothing 2PC, coordinator 
failure ⇒ potentially unbounded 
blocking 

Decision (commit/abort) lives in the 
coordinator’s local log; others cannot  
read it during failure

Shared Nothing

timeout timeout

timeout timeout

VoteVote

Coordinator

fail

35

Block until 

coordinator 

recovers!



Rethink 2PC with Storage Disaggregation

VoteVote

Coordinator

Network Replicated 

storage: HA 

& durability

Disaggregation

timeout

ABORT

fail

With disaggregated storage, the 2PC log is highly available; any active 

node can read peers’ votes and CAS-finalize the decision 36

Shared Nothing

timeout timeout

timeout timeout

VoteVote

Coordinator

fail

Block until 

coordinator 

recovers!



Cornus Failure Example

Coordinator fails 

37

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

fai

l



Cornus Failure Example

Coordinator fails 

Timeout in participant 1 waiting for 
coordinator’s message

38

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout



Cornus Failure Example

Use LogOnce() to write ABORT to other 
nodes’ log files

39

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout



Cornus Failure Example

Use LogOnce() to write ABORT to other 
nodes’ log files

VOTE-YES already exists, LogOnce() 
does not modify log content

40

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout



Cornus Failure Example

Storage service returns VOTE-YES 
without updating the logs

Participant 1 logs the COMMIT decision 

41

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

timeout

fai

l



Cornus Failure Example

Storage service returns VOTE-YES 
without updating the logs

Participant 1 logs the COMMIT decision 

Same process can happen for other 
participants (e.g., Participant 2)

42

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant 

1
Participant 

2

VOTE-YESVOTE-YESVOTE-YES

timeout

fai

l



Q/A – Two Phase Commit
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OCC instead of 2PL in distributed OLTP? 

Paxos/Raft vs. 2PC-based protocols? 

2PC for specific workload or with lower logging overhead?

Do modern systems use 2PC? 



Next Lecture

Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database. 
VLDB, 2020

44

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aria.pdf
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