
Xiangyao Yu

11/18/2025

CS 764: Topics in Database Management Systems

Lecture 22: Two-Phase Commit (2PC)

1

Today’s Paper: Distributed Transactions in R*

ACM Trans. Database Syst. 1986.
2

VLDB 2022

Agenda

3

Two-phase commit

• Presumed abort (PA)

• Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation

Distributed Transactions

4

Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions

Network

CPU

HDD

Memory

CPU

HDD

Memory

CPU

HDD

Memory

Shared Nothing

tuple A tuple B

Transaction T:

 write(A)

 write(B)

Atomic Commit Protocol (ACP)

5

Atomic commit protocol: all partitions reach the same commit or

abort decision of a transaction

tuple A tuple B

Transaction T:

 write(A)

 write(B)

The two updates must commit or abort atomically

Example:

The Challenge of Atomic Commit

6

A naïve approach: all nodes log and commit independently

tuple A tuple B

Transaction T:

 write(A)

 write(B)

Log and
commit

Commit

Log and

commit

Node 1 Node 2

back to caller

The Challenge of Atomic Commit

7

A naïve approach: all nodes log and commit independently

Node 2 crashes before logging

• Transaction T commits in node 1 but not in node 2

tuple A tuple B

Transaction T:

 write(A)

 write(B)

Commit

Log and

commit

Node 1 Node 2

Two-Phase Commit (2PC)

8

Coordinator Subordinate 2

tuple A tuple B
Key idea: let the coordinator log the

final commit/abort decision

Subordinate 1

Two-Phase Commit (2PC)

9

Coordinator Subordinate 2

tuple A tuple B
Key idea: let the coordinator log the

final commit/abort decision

Phase 1: prepare phaseSubordinate 1

[log]
prepare*

PREPARE

VOTE YES

[log]
prepare*

VOTE YES

PREPARE

Two-Phase Commit (2PC)

10

Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

[log]
prepare*

[log]
commit*

PREPARE

VOTE YES

[log]
prepare*

VOTE YES

PREPARE

Key idea: let the coordinator log the

final commit/abort decision

Phase 1: prepare phase

Phase 2: commit phase
• Coordinator logs the decision

back to caller

Two-Phase Commit (2PC)

11

Coordinator Subordinate 2

tuple A tuple B

Subordinate 1

back to caller

[log]
prepare*

[log]
commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

[log]
prepare*

VOTE YES

ACK

[log]
commit*

PREPARE

[log]
commit*

Key idea: let the coordinator log the

final commit/abort decision

Phase 1: prepare phase

Phase 2: commit phase
• Coordinator logs the decision

• Coordinator sends the decision to

subordinates

• Coordinator forgets the transaction

after receiving ACKs

2PC – Abort Example

12

abort*

Coord Subord1

PREPARE

VOTE NO

Subordinate returns VOTE NO if
the transaction is aborted

• Subordinate can release locks
and forget the transaction

Subord2

prepare*

VOTE YES

2PC – Abort Example

13

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Subordinate returns VOTE NO if
the transaction is aborted

• Subordinate can release locks
and forget the transaction

Skip the commit phase for
aborted subordinates

2PC – All Subordinates Abort

14

back to caller

abort*

abort* + end

PREPARE

VOTE NO

forget the txn

Skip the second phase entirely if
the transaction aborts at all the
subordinates

abort*

VOTE NO

Coord Subord1 Subord2

2PC – Failures

15

Use timeout to detect failures

Subordinate timeout
• Waiting for PREPARE: self abort

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Time out

Coord Subord

2PC – Failures

16

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Coordinator timeout
• Waiting for vote: self abort

Time out

2PC – Failures

17

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Subordinate timeout
• Waiting for decision: contact

coordinator or peer subordinates
(may block until the coordinator
recovers)Time out

2PC – Failures

18

back to caller

prepare* / abort*

commit* / abort*

PREPARE

VOTE YES/NO

commit* / abort*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord
Use timeout to detect failures

Coordinator timeout
• Waiting for ACK: contact

subordinates

Time out

2PC – Alternative Designs?

19

Subordinate returns vote to
coordinator before logging
prepare?

back to caller

prepare

commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord

2PC – Alternative Designs?

20

Subordinate returns vote to
coordinator before logging
prepare?

Problem: subordinate may
crash before the log record is
written to disk. The log record is
thus lost but the coordinator
already committed the
transaction

back to caller

prepare

commit*

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord

2PC – Alternative Designs?

21

Coordinator sends decision to
subordinates before logging the
decision?

back to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord

2PC – Alternative Designs?

22

Coordinator sends decision to
subordinates before logging the
decision?

Problem: coordinator crashes
before logging the decision and
decides to abort after restartback to caller

prepare*

commit

PREPARE

VOTE YES/NO

commit*

end

COMMIT/ABORT

ACK

forget the txn

Coord Subord

Optimization 1: Presumed Abort (PA)

23

Observation: It is safe for a coordinator to “forget” a transaction
immediately after it makes the decision to abort it and to write an
abort record

PA: Aborted Transaction

24

Coord Subord1 Subord2

back to

caller
abort

PREPARE

VOTE NO prepare*abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate

PA: Aborted Transaction

25

Coord Subord1 Subord2

back to

caller
abort

abort

abort
ABORT

PREPARE

forget

the txn

prepare*

VOTE YES

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Standard 2PC

Presumed Abort

• The abort record is not forced in subordinate

• The abort record is not forced in coordinator

• Coordinator forgets the transaction early

• No ACK for aborts

• Behavior of committed transactions unchanged

VOTE NO

PA: Partially Readonly Transactions

26

back to caller

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE READ

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Readonly subordinate does not log in prepare phase and skips commit phase

PA: Completely Readonly Transactions

27

back to caller

Coord Subord1

PREPARE

VOTE READ

forget the txn

Subord2

VOTE READ

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Completely readonly transactions skip the commit phase entirely

Optimization 2: Presumed Commit (PC)

28

Since most transactions are expected to commit, can we make
commits cheaper by eliminating the ACKs for COMMITS?

PC: Committed Transaction

29

Coord Subord1 Subord2

prepare*

PREPARE

VOTE YES
prepare*

VOTE YES

collecting*

back to caller

commit*

commit

COMMIT

commit

back to caller

prepare*

commit*

Coord Subord1

commit*

COMMIT

PREPARE

VOTE YES

end

ACK

forget the txn

Subord2

prepare*

VOTE YES

ACK

commit*

Need to force log collecting due to potential abort of coordinator

No need to send ACK for COMMITS

PC: Aborted Transaction

30

abort*

Coord Subord1

PREPARE

VOTE NO

Subord2

prepare*

VOTE YES

collecting*

back to caller

abort*

abort*

COMM IT

end

forget the txn

ACK

back to caller

abort*

abort*

Coord Subord1

abort*

ABORT

PREPARE

VOTE NO

end

forget the txn

Subord2

prepare*

VOTE YES

ACK

Abort behavior is similar to standard 2PC but requires logging collecting

Summary

31

Presumed Abort (PA) is better than standard 2PC (widely used in practice)

Presumed Commit (PC) is worse than PA in most cases

Agenda

32

Two-phase commit

• Presumed abort (PA)

• Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation

Limitations of 2PC

Limitation #1: Long latency
– User experiences latency of two logging

operations

Limitation #2: Blocking problem
– Participants are blocked if the coordinator

fails

33

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

fail

Block

until

coordinat

or

recovers!

timeout timeout

timeout timeout

2PC Limitations – Prior Solutions

34

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993

[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995

[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006

[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013

[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020

[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018

Solutions

Reduce latency

Non-blocking

Codesign 2PC

with replication

Example systems

Coordinator log [1]

Implicit yes vote [2]

Early prepare [3]

Three-phase commit (3PC) [4]

Paxos commit [5]

MDCC [6]

Parallel commit [7]

TAPIR [8]

Limitations in prior solutions

• Extra system or workload

assumptions

• Violate site autonomy

• Requires extra latency and/or

network messages

• Extra design complexity

• Custom-designed consensus protocol

Rethink 2PC with Storage Disaggregation

In shared-nothing 2PC, coordinator
failure ⇒ potentially unbounded
blocking

Decision (commit/abort) lives in the
coordinator’s local log; others cannot
read it during failure

Shared Nothing

timeout timeout

timeout timeout

VoteVote

Coordinator

fail

35

Block until

coordinator

recovers!

Rethink 2PC with Storage Disaggregation

VoteVote

Coordinator

Network Replicated

storage: HA

& durability

Disaggregation

timeout

ABORT

fail

With disaggregated storage, the 2PC log is highly available; any active

node can read peers’ votes and CAS-finalize the decision 36

Shared Nothing

timeout timeout

timeout timeout

VoteVote

Coordinator

fail

Block until

coordinator

recovers!

Cornus Failure Example

Coordinator fails

37

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

fai

l

Cornus Failure Example

Coordinator fails

Timeout in participant 1 waiting for
coordinator’s message

38

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout

Cornus Failure Example

Use LogOnce() to write ABORT to other
nodes’ log files

39

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout

Cornus Failure Example

Use LogOnce() to write ABORT to other
nodes’ log files

VOTE-YES already exists, LogOnce()
does not modify log content

40

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

fai

l
timeout

Cornus Failure Example

Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

41

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

timeout

fai

l

Cornus Failure Example

Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

Same process can happen for other
participants (e.g., Participant 2)

42

write(A) write(B) write(C)

Transaction

Coordinato

r

Participant

1
Participant

2

VOTE-YESVOTE-YESVOTE-YES

timeout

fai

l

Q/A – Two Phase Commit

43

OCC instead of 2PL in distributed OLTP?

Paxos/Raft vs. 2PC-based protocols?

2PC for specific workload or with lower logging overhead?

Do modern systems use 2PC?

Next Lecture

Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database.
VLDB, 2020

44

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aria.pdf

	Slide 1
	Slide 2: Today’s Paper: Distributed Transactions in R*
	Slide 3: Agenda
	Slide 4: Distributed Transactions
	Slide 5: Atomic Commit Protocol (ACP)
	Slide 6: The Challenge of Atomic Commit
	Slide 7: The Challenge of Atomic Commit
	Slide 8: Two-Phase Commit (2PC)
	Slide 9: Two-Phase Commit (2PC)
	Slide 10: Two-Phase Commit (2PC)
	Slide 11: Two-Phase Commit (2PC)
	Slide 12: 2PC – Abort Example
	Slide 13: 2PC – Abort Example
	Slide 14: 2PC – All Subordinates Abort
	Slide 15: 2PC – Failures
	Slide 16: 2PC – Failures
	Slide 17: 2PC – Failures
	Slide 18: 2PC – Failures
	Slide 19: 2PC – Alternative Designs?
	Slide 20: 2PC – Alternative Designs?
	Slide 21: 2PC – Alternative Designs?
	Slide 22: 2PC – Alternative Designs?
	Slide 23: Optimization 1: Presumed Abort (PA)
	Slide 24: PA: Aborted Transaction
	Slide 25: PA: Aborted Transaction
	Slide 26: PA: Partially Readonly Transactions
	Slide 27: PA: Completely Readonly Transactions
	Slide 28: Optimization 2: Presumed Commit (PC)
	Slide 29: PC: Committed Transaction
	Slide 30: PC: Aborted Transaction
	Slide 31: Summary
	Slide 32: Agenda
	Slide 33: Limitations of 2PC
	Slide 34: 2PC Limitations – Prior Solutions
	Slide 35: Rethink 2PC with Storage Disaggregation
	Slide 36: Rethink 2PC with Storage Disaggregation
	Slide 37: Cornus Failure Example
	Slide 38: Cornus Failure Example
	Slide 39: Cornus Failure Example
	Slide 40: Cornus Failure Example
	Slide 41: Cornus Failure Example
	Slide 42: Cornus Failure Example
	Slide 43: Q/A – Two Phase Commit
	Slide 44: Next Lecture

