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Today’s Paper: Distributed Transactions in R*

Transaction Management in the R*
Distributed Database Management System

C. MOHAN, B. LINDSAY, and R, OBERMARCK
IBM Almaden Research Center

This paper deals with the transaction management aspects of the R* distributed database system. It
concentrates primarily on the description of the R* commit protocols, Presumed Abort (PA) and
Presumed Commit (PC). PA and PC are extensions of the well-known, two-phase (2P) commit
protocol. PA is optimized for read-only transactions and a class of multisite update transactions, and
PC is optimized for other classes of multisite update transactions. The optimizations result in reduced
intersite message traffic and log writes, and, consequently, a better response time. The paper also
discusses R*'s approach toward distributed deadlock detection and resolution.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks): Distributed
Systems—distributed databases; D.4.1 [Operating Systems]: Process Manag) t rency;
deadlocks; synchronization; D.4.7 [Operating Systems]: Organization and Design—distributed sys-
tems; D.4.5 [Operating Systems): Reliability—fault tolerance; H.2.0 [Database Management]:
General—concurrency control; H.2.2 [Database Management]: Physical Design—recovery and
restart; H.2.4 [Database M t]: Systems—distributed systems; transaction processing; H.2.7
[Database Management): Database Admnmstrauon—.".oggmg and recovery

General Terms: Algorithms, Design, Reliability
Additional Key Words and Phrases: Commit protocols, deadlock victim selection

INTRODUCTION

R* is an experimental, distributed database management system (DDBMS)
developed and operational at the IBM San Jose Research Laboratory (now
renamed the IBM Almaden Research Center) [18, 20]. In a distributed database
system, the actions of a transaction (an atomic unit of consistency and recovery
[13]) may occur at more than one site. Our model of a transaction, unlike that
of some other researchers’ [25, 28], permits multiple data manipulation and
definition statements to constitute a single transaction. When a transaction
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ABSTRACT

Two-phase commit (2PC) is widely used in distributed databases
to ensure atomicity of distributed transactions. Conventional 2PC
was originally designed for the shared-nothing archi and
has two limitations: long latency due to two eager log writes on the
critical path, and blocking of progress when a coordinator fails.
Modern cloud-native databases are moving to a storage disag-
gregation architecture where storage is a shared highly-available
service. Our key observation is that disaggregated storage enables
protocol innovations that can address both the long-latency and
blocking problems. We develop Cornus, an optimized 2PC protocol
to achieve this goal. The only extra functionality Cornus requires is
an atomic compare-and-swap capability in the storage layer, which

many existing storage services already support. We present Cornus
in detail and show how it addresses the two limitations. We also
deploy it on real storage services including Azure Blob Storage and
Redis. Empirical evaluations show that Cornus can achieve up to
1.9x latency reduction over conventional ZPC.
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1 INTRODUCTION
Databases are migrating to the cloud because of desirable features

such as elasticity, high availability, and cost itiveness. Mod-
ern cloud-native databases feature a storage-disaggregation archi-

tecture where the storage is decoupled from computation as a
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Figure 1: Shared-Nothing vs. Storage-Disaggregation.

standalone service as shown in Figure 1b. This architecture allows
independent scaling and billing of computation and storage, which
can improve resource utilization, reduce operational cost, and en-
able flexible cloud depk with | us confi tions.
Many cloud-native database systems adopt such an architecture for
both OLTP [21, 49, 62, 67] and OLAP [14-16, 23, 30, 60]. Nowadays,
as storage services offer essential functions such as fault tolerance,
scalability, and security at low-cost, systems start to layer their
designs on the existing disaggregated storage services [22, 26].
This paper focuses on efficient deployment of the two-phase
cammit protocol on existing storage services. Two-phase commit
(2PC) is the most widely used atomic commit protocel, which en-
sures that distributed transactions commit in either all or none
of the involved data partitions. 2PC was originally designed for
the shared-nothing architecture and suffers from two major prob-
lems. The first is long latency: 2PC requires two round-trip network
and iated logging op Previous work has
demonstrated that the majority of a transaction’s execution time
can be attributed to 2PC [19, 20, 32, 42, 50, 52, 64]. The second
problem is blocking [24, 25, 53]. Blocking occurs if a coordinator
crashes before notifying participants of the final decision. These
two problems greatly limit the performance of 2PC, especially in a
storage disaggregation architecture
Various techniques have been pn)pns:d to address these two
with 2PC. Some prop izations target the shared-
nothing architecture and do ot solve both problems simultane-
ously. These protocols either reduce latency by making strong
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about the workload and/or system that are not always
practical for disaggregated storage [18-20, 25, 45, 46, 55, 56], or
they mitigate the blocking problem by adding an extra phase and
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Two-phase commit

* Presumed abort (PA)
* Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation



Distributed Transactions

Data is partitioned and stored in each server
A distributed transaction accesses data across multiple partitions

cPU CPU cru | Transaction T:
write(A)
Memory Memory Memory erte(B)
tuple A tuple B
S > S
HDD HDD HDD
Network

Shared Nothing



Atomic Commit Protocol (ACP)

Atomic commit protocol: all partitions reach the same commit or
abort decision of a transaction

Example:

j tuple A

j tuple B

Transaction T:
write(A)
write(B)

The two updates must commit or abort atomically



The Challenge of Atomic Commit
Node 1 Node 2

Transaction T:
= tuple A = tuple B write(A)
write(B)

Commit

Log and Log and
commit commit
<

back to caller

A nalve approach: all nodes log and commit independently



The Challenge of Atomic Commit
Node 1 Node 2

Transaction T:
= tuple A = tuple B write(A)
write(B)

Commit
Log and x
commit

A nalve approach: all nodes log and commit independently

Node 2 crashes before logging
 Transaction T commits in node 1 but not in node 2



Two-Phase Commit (2PC)

t Key idea: let the coordinator log the
uple A tuple B _ . .
= = = final commit/abort decision

Coordinator  Subordinate 1  Subordinate 2



Two-Phase Commit (2PC)

Key idea: let the coordinator log the
tuple A tuple B _ _ .
= = = final commit/abort decision
Coordinator ~ Subordinate 1~ Subordinate 2 Phase 1: prepare phase
— PREPARE
PREPARE [log] [log] .
VOTE YES prepare prepare

<— VOTE YES



Two-Phase Commit (2PC)

Key idea: let the coordinator log the
tuple A tuple B _ _ .
= = = final commit/abort decision
Coordinator ~ Subordinate 1~ Subordinate 2 Phase 1: prepare phase

— PREPARE

——— Phase 2: commit phase
PREPARE [log] j log] « Coordinator Io%s the decision
repare* prepare
VOTE YES P
VOTE YES
[log] I
commit*

back to caller
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Two-Phase Commit (2PC)

tuple A tuple B

Subordinate 1  Subordinate 2

— PREPARE

Coordinator

PREPARE llog] j llog]
VOTE YES prepare prepare
VOTE YES
[log]
commit*
COMMIT

back to caller

[log]
commit*

[log]
commit*

end

forget the txn

Key idea: let the coordinator log the
final commit/abort decision

Phase 1: prepare phase

Phase 2: commit phase
« Coordinator logs the decision
« Coordinator sends the decision to
subordinates
« Coordinator forgets the transaction
after receiving ACKs

11



2PC — Abort Example

Coord Subord1 Subord?2

PREPARE

abort* prepare*

VOTE NO
VOTE YES

Subordinate returns VOTE NO if
the transaction is aborted

e Subordinate can release locks
and forget the transaction

12



2PC — Abort Example

Coord Subord1
PREPARE
abort*
VOTE NO

abort*
<

back to caller

end

forget the txn

VOTE YES

Subord?2

prepare*

abort*

Subordinate returns VOTE NO if
the transaction is aborted

e Subordinate can release locks
and forget the transaction

Skip the commit phase for
aborted subordinates

13



2PC — All Subordinates Abort

Coord Subord1  Subord2 Skip the second phase entirely if
SREPARE the transaction aborts at all the

subordinates
VOTE NO

abort* abort*

VOTE NO

abort* + end
<
back to caller

forget the txn

14



2PC — Failures

Coord Subord
PREPARE

Time out

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

15



2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort* Time out

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Coordinator timeout
» Waiting for vote: self abort

16



2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*
COMMIT/ABORT

Time out

<
back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout

» Waiting for decision: contact
coordinator or peer subordinates
(may block until the coordinator
recovers)

17



2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

ACK

end T Time out

forget the txn

Use timeout to detect failures

Coordinator timeout

» Waiting for ACK: contact
subordinates

18



2PC — Alternative Designs?

Coord Subord
PREPARE

VOTE YES/NO
prepare
commit*

< COMMIT/ABORT

back to caller

commit*

end
forget the txn

Subordinate returns vote to

coordinator before logging
prepare?

19



2PC — Alternative Designs?

Subord
PREPARE

Coord

VOTE YES/NO

commit*

<
back to caller

end
forget the txn

prepare

COMMIT/ABORT

commit*

Subordinate returns vote to
coordinator before logging
prepare?

Problem: subordinate may
crash before the log record is
written to disk. The log record is
thus lost but the coordinator
already committed the
transaction

20



2PC — Alternative Designs?

Coord Subord Coordinator sends decision to
PREPARE

subordinates before logging the
VOTE YES/NO d . )

COMMIT/ABORT

commit
< commit*
back to caller

ACK
end

forget the txn

21



2PC — Alternative Designs?

Coord

PREPARE

VOTE YES/NO

COMMIT/ABORT

commit
<

back to caller

end
forget the txn

ACK

Subord

prepare*

commit*

Coordinator sends decision to
subordinates before logging the
decision?

Problem: coordinator crashes
before logging the decision and
decides to abort after restart

22



Optimization 1: Presumed Abort (PA)

Observation: It is safe for a coordinator to “forget” a transaction
iImmediately after it makes the decision to abort it and to write an

abort record

23



PA: Aborted Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord?2
_______PREPARE back to PREPARE
caller i
VOTE NO abort prepare abort prepare
VOTE YES
Presumed Abort

 The abort record is not forced in subordinate

Standard 2PC

24



PA: Aborted Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord?2
_______PREPARE back to EPARE
<caller
VOTE NO abort prepare forget abortOTE NO | abort prepare

the txn VOTE YES

VOTE YES

abort ABORT ABORT ' abort
back to caller —>
abort*
ACK Presumed Abort
end « The abort record is not forced in subordinate

The abort record is not forced in coordinator
Coordinator forgets the transaction early
No ACK for aborts

Behavior of committed transactions unchanged

forget the txn

Standard 2PC

25



PA: Partially Readonly Transactions

Coord Subord1 Subord?2 Coord Subord1 Subord?2

EPARE PREPARE

prepare* prepare* prepare
VOTE
VOTE YES VOTE YES
commit* commit*
< OMMIT < OMMIT

back to caller back to caller

commit* commit* commit*

AC

end end

forget the txn forget the txn

Readonly subordinate does not log in prepare phase and skips commit phase

*

26



PA: Completely Readonly Transactions

Coord Subord1 Subord2 Coord Subord1 Subord?
EPARE \PREPARE
—>
prepare* prepare* VOTEEW/
VOTE VOTE READ

<

VOTE YES back to caller

forget the txn

commit*
<

back to caller

OMMIT

commit* commit*

AC

end

forget the txn

Completely readonly transactions skip the commit phase entirely

27



Optimization 2: Presumed Commit (PC)

Since most transactions are expected to commit, can we make
commits cheaper by eliminating the ACKs for COMMITS?

28



PC: Committed Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord2
EPARE
prepare* prepare* PREPARE
VOTE
VOTE YES prepare* prepare*
commit” VOTE YES
OMMIT
back to caller commlt*
. COMMIT
commlt commit* back to caller
commit jEmit

forget the txn

Need to force log collecting due to potential abort of coordinator
No need to send ACK for COMMITS

29



PC: Aborted Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord?2
_____PREPARE o,
collecting
abort* prepare* —FPREPARE
VOTE NO
abort* repare*
o VOTE YES VOTE prep
< abo ABORT L VOTE YES
— abort*
back to caller ) < COMM IT
abort back to caller
ACK
abort*
AC
end
forget the txn end

forget the txn

Abort behavior is similar to standard 2PC but requires logging collecting
30



Summary

Process . v
Type Coordinator Subordinate v
Protocol U U R RS
Type Yes US No US UsS RS Us
Standard m,n,0,p
‘?'P 2’1,—,2 = - 2’ 3’2 -
Presumed
Abort 2,1,1,211,1,110,0,1 ) 2,2,2/0,0,1
Presumed
Commit 2,2,1,2 2,2,1 2,’1.‘1 2;-1-.!1 0,0,1

Update Transaction

Read-Only Transaction

Read-0Only Subordinate

Update Subordinate

m Records HWritten, n of Them Forced

o For a Coordinator: # of Messages Sent to Each RS
For a Subordinate: % of Messages Sent to

Coordinator

p % of Messages Sent to Each US

Presumed Abort (PA) is better than standard 2PC (widely used in practice)
Presumed Commit (PC) is worse than PA in most cases

31



Agenda

Two-phase commit

* Presumed abort (PA)
* Presumed Commit (PC)

Cornus: 2PC optimized for storage disaggregation

32



Limitations of 2PC

Transaction
write(A)  write(B)  write(C) Limitation #1: Long latency
P — User experiences latency of two logging
operations

Limitation #2: Blocking problem

— Participants are blocked if the coordinator
fails

€ fail  timeout | NN I
x tlme% : timeout :

e contact coordh;\at;Oélock
P timeout : timeout | ~ .
4_,4 — orﬁafoyntll

+ ‘contact COOTAINTEEE 1 rdinat

or 33

recovers!




2PC Limitations — Prior Solutions

Solutions Example systems Limitations in prior solutions
Coordinator log [1] « Extra system or workload
Reduce latency Implicit yes vote [2] assumptions
Early prepare [3] « Violate site autonomy
Non-blocking Three-phase commit (3PC) [4] * Requires extra latency anad/or
network messages
. Paxos commit [9] « Extra design complexity
Codesign 2PC MDCC [6] « Custom-designed consensus protocol
with replication Parallel commit [7]
TAPIR [8]

[1] James W Stamos and Flaviu Cristian. Coordinator log transaction execution protocol. Distributed and Parallel Databases 1993

[2] Y Al-Houmaily and P Chrysanthis. Two-phase commit in gigabit-networked distributed databases. PDCS, 1995

[3] James W Stamos and Flaviu Cristian. A low-cost atomic commit protocol. Symposium on Reliable Distributed Systems, 1990

[4] Dale Skeen. Nonblocking commit protocols. SIGMOD 1981

[5] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Trans. Database Syst, 2006

[6] TimKraska, et al. MDCC: Multi-data center consistency. European Conference on Computer Systems, 2013

[7] Rebecca Taft, et al. Cockroachdb: The resilient geo-distributed SQL database. SIGMOD 2020

[8] Irene Zhang, et al. Building consistent transactions with inconsistent replication. TOCS 2018 34



Rethink 2PC with Storage Disaggregation

Shared Nothing In shared-nothing 2PC, coordinator
failure = potentially unbounded
8 O O blocking
e | Decision (commit/abort) lives in the
f % coordinator’s local log; others cannot
: Vote | Vote read it during failure
fai|* timeout; timeoiti
—contact coordinator
: timeout: timeout: Block until
g — .
T contact coordinator coordinator

recovers!

35



Rethink 2PC with Storage Disaggregation

Shared Nothing Disaggregation
8, @ = NetW°fk Replicated
 Coordinator | w w @ storage: HA
- — [ Coordinator ] & durablllty
| Vote J Vote
: Vote Vote
fai|* timeout: timeout! i'_z : ]
: t rdTrfator RT
timeout; contac t(;rc::aoiti Block until fa'lx LogOnCG(AE(g t|r21eout
T contact coordinator coordinator fBORT

recovers!

With disaggregated storage, the 2PC log is highly available; any active
node can read peers’ votes and CAS-finalize the decision 36



Cornus Failure Example

write(A)

Transaction
write(C)

write(B)

| cPu |

Coordinator fails

37



Cornus Failure Example

write(A)

write(B)

Transaction
write(C)

| cPu |

timeou:t
[

Coordinator fails

Timeout in participant 1 waiting for
coordinator’'s message

38



Cornus Failure Example

write(A)

Transaction
write(C)

write(B)

| cPu |

timeou:t

Use LogOnce() to write ABORT to other

nodes’ log files

39



Cornus Failure Example

write(A)

write(B)

Transaction
write(C)

| cPu |

timeou:t

Use LogOnce() to write ABORT to other

nodes’ log files

VOTE-YES already exists, LogOnce()
does not modify log content

40



Cornus Failure Example

write(A)

Transaction
write(C)

write(B)

| cPu |

Storage service returns VOTE-YES
without updating the logs

Participant 1 logs the COMMIT decision

41



Cornus Failure Example

Transaction
write(A)  write(B)  write(C) Storage service returns VOTE-YES

provey without updating the logs

[:Pu | CPU |3

/ \ Participant 1 logs the COMMIT decision

Same process can happen for other
participants (e.g., Participant 2)

42



Q/A — Two Phase Commit

OCC instead of 2PL in distributed OLTP?

Paxos/Raft vs. 2PC-based protocols?
2PC for specific workload or with lower logging overhead?

Do modern systems use 2PC?

43



Next Lecture

Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database.
VLDB, 2020
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https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/aria.pdf
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