
Xiangyao Yu

11/20/2025

CS 764: Topics in Database Management Systems

Lecture 23: Deterministic DBMS

1

Today’s Paper: Deterministic DBMS

VLDB 2020 2

Distributed DBMS Overhead: Replication

Partition 1

Partition 2

Partition 3

Two-phase commit (2PC)
incurs extra network traffic
and disk logging

Coordinator

Participant

Participant

3

Distributed DBMS Overhead: Replication

Partition 1

Partition 2 Partition 2 Partition 2

Partition 3

Site 1 Site 2 Site 3

Partition 3 Partition 3

Partition 1Partition 1

Two-phase commit (2PC)
incurs extra network traffic
and disk logging

Network can be a
bottleneck for log shipping
during replication

4

Distributed DBMS Overhead: Replication

Partition 1

Partition 2 Partition 2 Partition 2

Partition 3

Site 1 Site 2 Site 3

Partition 3 Partition 3

Partition 1Partition 1

Two-phase commit (2PC)
incurs extra network traffic
and disk logging

Network can be a
bottleneck for log shipping
during replication

2PC and replication
degrade performance

5

P1

P2 P2 P2

P3

Site 1 Site 2 Site 3

P3 P3

P1P1

Deterministic Concurrency Control

Determine a batch of transactions and their order
– Each replica (i.e., site) executes the batch deterministically

T1 T2 T3 …
Conventional Deterministic

Txn batch

P1

P2 P2 P2

P3

Site 1 Site 2 Site 3

P3 P3

P1P1

6

Deterministic Concurrency Control

Step 1: Determine the
order for a batch of
transactions

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Site 2 Site 3Site 1

T1 T2 T3 …

Sequencer

User transactions

T1 T2 T3 … T1 T2 T3 …

7

Deterministic Concurrency Control

Step 1: Determine the
order for a batch of
transactions

Step 2: Replicate and
persist the inputs of these
transactions

– input size < data log size

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Site 2 Site 3Site 1

T1 T2 T3 …

Sequencer

User transactions

T1 T2 T3 … T1 T2 T3 …

8

Deterministic Concurrency Control

Step 1: Determine the
order for a batch of
transactions

Step 2: Replicate and
persist the inputs of these
transactions

– input size < data log size

Step 3: Each replica
executes transactions
deterministically without
2PC or replication

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Site 2 Site 3Site 1

T1 T2 T3 …

Sequencer

User transactions

T1 T2 T3 … T1 T2 T3 …

9

Calvin [1]

Goal: Deterministically execute a batch of transactions using parallel
hardware

10[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

Calvin [1]

Goal: Deterministically execute a batch of transactions using parallel
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

11[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

Calvin [1]

Goal: Deterministically execute a batch of transactions using parallel
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

Execution process:
– A single thread acquires all locks following the deterministic order

– Worker threads execute transactions when their locks are acquired

=> Limitation 2: the single locking thread can be a performance bottleneck

12[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

Calvin Example

The locking thread performs the following:
– Lock y (SH) and x (EX) and dispatch T1 for execution

– Lock z (SH) and add T2’s EX lock request into y’s waiting queue

– Add T3’s EX lock requests into z’s and y’s waiting queues

13/32

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

No requirement of knowing read/write sets
– All transactions in a batch read from the same snapshot and write to local

write sets, in parallel

– Deterministically decide what transactions can commit based on the access
set.

– If abort, deterministically move to next batch

No global locking thread

Aria Deterministic Concurrency Control

Committed Aborted Unprocessed

𝑇1 𝑇2 𝑇3 𝑇4

𝑇2 𝑇5 𝑇6 𝑇7

Batch 𝑖

Batch 𝑖 + 1

11/32

Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T

reservation[h(x)] = min(T.ID, reservation[h(x)])

0 1 … n

∞ ∞ ∞

Write reservation table

Hash h()

tuple x

22/27

Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T

reservation[h(x)] = min(T.ID, reservation[h(x)])

After the entire batch is executed, T can commit if
– For every write w, T.ID = reservation[h(w)]

– For every read r, T.ID ≤ writes[h(r)]

0 1 … n

∞ ∞ ∞

Write reservation table

Hash h()

tuple x

22/27

Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T

reservation[h(x)] = min(T.ID, reservation[h(x)])

After the entire batch is executed, T can commit if
– For every write w, T.ID = reservation[h(w)]

– For every read r, T.ID ≤ writes[h(r)]

0 1 … n

∞ ∞ ∞

Write reservation table

Hash h()

tuple x

T1 T2 T3

write-after-read write-after-read
Intuition: Write-after-read (WAR)
dependencies must point from right to left

22/27

Aria Example

𝑥 𝑦 𝑧

∞ ∞ ∞

Write reservation table

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Deterministic reservation => deterministic results for parallel

execution

13/32

Aria Example

𝑥 𝑦 𝑧

𝑇1 ∞ ∞

Write reservation table

Deterministic reservation => deterministic results for parallel

execution

13/32

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Aria Example

𝑥 𝑦 𝑧

𝑇1 𝑇2 ∞

Write reservation table

Deterministic reservation => deterministic results for parallel

execution

13/32

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Aria Example

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

Deterministic reservation => deterministic results for parallel

execution

13/32

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Aria Example

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

Deterministic reservation => deterministic results for parallel

execution

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Commit

Commit

Abort

For every write w, T.ID = reservation[h(w)]

For every read r, T.ID ≤ writes[h(r)]

Aria Example

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

Deterministic reservation => deterministic results for parallel

execution

13/32

T1: read(y), write(x)

T2: read(z), write(y)

T3: write(z), write(x)

Commit

Commit

Abort

For every write w, T.ID = reservation[h(w)]

For every read r, T.ID ≤ writes[h(r)] T1 T2 T3

write-after-write

write-after-read write-after-read

Limitation of Basic Aria

Observation: sometimes cannot commit in T1, T2, T3 order,

but can commit in T3, T2, T1 order

14/32

Limitation of Basic Aria

T1: write(x)

T2: read(x), write(y)

T3: read(y), write(z)

Observation: sometimes cannot commit in T1, T2, T3 order,

but can commit in T3, T2, T1 order

Example:

14/32

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

Limitation of Basic Aria

T1: write(x)

T2: read(x), write(y)

T3: read(y), write(z)

Observation: sometimes cannot commit in T1, T2, T3 order,

but can commit in T3, T2, T1 order

Example:

14/32

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

T1 T2 T3

write-after-read write-after-read

Limitation of Basic Aria

T1: write(x)

T2: read(x), write(y)

T3: read(y), write(z)

Observation: sometimes cannot commit in T1, T2, T3 order,

but can commit in T3, T2, T1 order

Example:

14/32

𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

T1 T2 T3

write-after-read write-after-read

Basic Aria requires all WAR dependencies

to point left, which is too restrictive!

Optimization: Deterministic Reordering

Goal: Deterministically change the transaction order

Key Idea: The execution is serializable as long as the dependency

graph has no cycle

24/27

Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[h(x)] = min(T.ID, write-res[h(x)])

For each read(tuple x) read-res[h(x)] = min(T.ID, read-res[h(x)])

After the entire batch is executed, T can commit if

– For every write w, T.ID = write-res [h(w)]

– For every read r, T.ID ≤ write-res[h(r)] or for every write w, T.ID ≤ read-res[h(w)]

24/27

Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[h(x)] = min(T.ID, write-res[h(x)])

For each read(tuple x) read-res[h(x)] = min(T.ID, read-res[h(x)])

After the entire batch is executed, T can commit if

– For every write w, T.ID = write-res [h(w)]

– For every read r, T.ID ≤ write-res[h(r)] or for every write w, T.ID ≤ read-res[h(w)]

The algorithm is deterministic with no central bottleneck
24/27

Evaluation – Overall (YCSB)

A YCSB workload: 480k keys , 80/20 read/write, 10 keys per transaction, uniform distribution, 12 threads

25/27

Evaluation – Deterministic Reordering

A YCSB workload: we vary the skew factor from 0 to 1

26/27

Conclusions

Aria supports deterministic transaction execution with no prior
knowledge of the read/write sets

Aria does not use a single thread to lock tuples sequentially

Deterministic reordering further improves the performance of Aria

19/32

Q/A – Deterministic DBMS

34

Aria in a geo-distributed deployment with high network latency?

Hybrid Aria and traditional OCC/MVCC?

Aria (and deterministic DB in general) with interactive transactions?

Aria with long-running transactions (potentially read-only)?

Overhead of deterministic reordering?

Limitations or workloads where Aria would underperform?

Next Lecture

Alexandre Verbitski, et al., Amazon Aurora: Design Considerations for
High Throughput Cloud-Native Relational Databases. SIGMOD, 2017

35

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf

	Slide 1
	Slide 2: Today’s Paper: Deterministic DBMS
	Slide 3: Distributed DBMS Overhead: Replication
	Slide 4: Distributed DBMS Overhead: Replication
	Slide 5: Distributed DBMS Overhead: Replication
	Slide 6: Deterministic Concurrency Control
	Slide 7: Deterministic Concurrency Control
	Slide 8: Deterministic Concurrency Control
	Slide 9: Deterministic Concurrency Control
	Slide 10: Calvin [1]
	Slide 11: Calvin [1]
	Slide 12: Calvin [1]
	Slide 13: Calvin Example
	Slide 14: Aria Deterministic Concurrency Control
	Slide 15: Key Technique: Deterministic Reservation [2]
	Slide 16: Key Technique: Deterministic Reservation [2]
	Slide 17: Key Technique: Deterministic Reservation [2]
	Slide 18: Aria Example
	Slide 19: Aria Example
	Slide 20: Aria Example
	Slide 21: Aria Example
	Slide 22: Aria Example
	Slide 23: Aria Example
	Slide 24: Limitation of Basic Aria
	Slide 25: Limitation of Basic Aria
	Slide 26: Limitation of Basic Aria
	Slide 27: Limitation of Basic Aria
	Slide 28: Optimization: Deterministic Reordering
	Slide 29: Optimization: Deterministic Reordering
	Slide 30: Optimization: Deterministic Reordering
	Slide 31: Evaluation – Overall (YCSB)
	Slide 32: Evaluation – Deterministic Reordering
	Slide 33: Conclusions
	Slide 34: Q/A – Deterministic DBMS
	Slide 35: Next Lecture

