WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 23: Deterministic DBMS

Xiangyao Yu
11/20/2025

Today’s Paper: Deterministic DBMS

Aria: A Fast and Practical Deterministic OLTP Database

YiLul, Xiangyao Yu 2 LeiCao 1, Samuel Madden’!
I Massachusetts Institute of Technology, Cambridge, MA, USA
gUniwersw'ty of Wisconsin-Madison, Madison, WI, USA

{yilu,lcao,madden}@csail .mit.edu,

ABSTRACT

Deterministic databases are able to efficiently run transac-
tions across different replicas without coordination. How-
ever, existing state-of-the-art deterministic databases require
that transaction read /write sets are known before execution,
making such systems impractical in many OLTP applica-
tions. In this paper, we present Aria, a new distributed and
deterministic OLTP database that does not have this lim-
itation. The key idea behind Aria is that it first executes
a batch of transactions against the same database snapshot
in an erecution phase, and then deterministically (without
communication between replicas) chooses those that should
commit to ensure serializability in a commit phase. We also
propose a novel deterministic reordering mechanism that al-
lows Aria to order transactions in a way that reduces the
number of conflicts. Our experiments on a cluster of eight
nodes show that Aria outperforms systems with conven-
tional nondeterministic concurrency control algorithms and
the state-of-the-art deterministic databases by up to a factor
of two on two popular benchmarks (YCSB and TPC-C).

PVLDB Reference Format:

Yi Lu, Xiangyao Yu, Lei Cao and Samuel Madden. Aria: A Fast
and Practical Deterministic OLTP Database. PVLDB, 13{11):
2047-2060, 2020

DOL: https:/ /doi.org/10. 14778/ 3407790.340T808

1. INTRODUCTION

Modern database systems employ replication for high avail-
ability and data partitioning for scale-out. Replication al-
lows systems to provide high availability, i.e., tolerance to
machine failures, but also incurs additional network round
trips to ensure writes are synchronized to replicas. Parti-
tioning across several nodes allows systems to scale to larger
databases. However, most implementations require the use
of two-phase commit (2PC) [37] to address the issues caused
by nondeterministic events such as system failures and race
conditions in concurrency control. This introduces addi-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit hitp e d/4.00. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDE Endowment, Yol. 13, No. 11

ISSN 2150-8097.

DOL: https://doi.org/10.14778/3407790.3407808

VLDB 2020

yxylcs.wisc.edu

tional latency to distributed transactions and impairs scal-
ability and availability (e.g., due to coordinator failures).

Deterministic concurrency control algorithms [18, 19, 51,
52] provide a new way of building distributed and highly
available database systems. They avoid the use of expen-
sive commit and replication protocols by ensuring different
replicas always independently produce the same results as
long as the same input transactions are given. Therefore,
rather than replicating and synchronizing the updates of
distributed transactions, deterministic databases only have
to replicate the input transactions across different replicas,
which can be done asynchronously and often with much less
communication. In addition, deterministic databases avoid
the use of two-phase commit, since they naturally eliminate
nondeterministic race conditions in concurrency control and
are able to recover from system failures by re-executing the
same original input transactions.

The state-of-the-art deterministic databases, BOHM [19],
PWV [18], and Calvin [52], achieve determinism through
dependency graphs or ordered locks. The key idea in BOHM
and PWV is that a dependency graph is built from a batch of
input transactions based on the read/write sets. In this way,
the database can produce deterministic results as long as the
transactions are run following the dependency graph. The
key idea in Calvin is that read /write locks are acquired prior
to executing the transaction, and according to the ordering
of input transactions. A transaction is assigned to a worker
thread for execution once all needed locks are granted. As
shown in the left side of Figure 1, existing deterministic
databases perform dependency analysis before transaction
execution, which requires that the read /write set of a trans-
action be known a priori. For very simple transactions, e.g.,
that only access to records via equality lookups on a primary
key, this can be done easily. However, in reality, many trans-
actions access records through complex predicates over non-
key attributes; for such queries, these systems must execute
the query at least twice: once to determine the read/write
set, once to execute the query, and possibly more times if
the pre-determined read/write set changes between these
two executions. In addition, Calvin requires the use of a
single-threaded lock manager per database partition, which
significantly limits the concurrency it can achieve.

In this paper, we propose a new system, Aria, to address
the limitations in previous deterministic OLTP databases
with a fundamentally different mechanism, which does not
require any analysis or pre-execution of input transactions.
Aria runs transactions in batches. The key idea is that each
replica runs an identical batch of transactions on an iden-

Distributed DBMS Overhead: Replication

Two-phase commit (2PC)
Participant incurs extra network traffic
and disk logging

m
“.
w Coordinator
“.

Partition 3

Participant

Distributed DBMS Overhead: Replication

—

>| Partition 1 \

— 3

e
e

>| Partition 2 \
—

dhda
|
Partition 3 ||

Site 1

>| Partition 3 I

Site 2

Partition 1

Partition 2
<>
Partition 3

Site 3

Two-phase commit (2PC)
incurs extra network traffic
and disk logging

Network can be a
bottleneck for log shipping
during replication

Distributed DBMS Overhead: Replication

—

>| Partition 1 \

e
e

| Partition 2

> Partition 3

dhda
|
Partition 3 ||

Site 1

a0 &

Site 2

Partition 1

Partition 2

Partition 3

Site 3

Two-phase commit (2PC)
incurs extra network traffic
and disk logging

Network can be a
bottleneck for log shipping
during replication

2PC and replication
degrade performance

Deterministic Concurrency Control

Determine a batch of transactions and their order
— Each replica (i.e., site) executes the batch deterministically

Site 1

Conventional

i

=P

—
P

P2

Site 2

A9 4 L9 4
U

Site 3

P1

P2

P3

Site 1

Deterministic

Txn batch | T1

P1

[——]

P2

I ——’

P3

e

Site 2

T2

T3 | -«

v

P1

\—’

P2

N ——]

P3

N ———

Site 3

Deterministic Concurrency Control

l l User transactions l

Sequencer

T1]T2

— T
~

Partition 1

~——

—
~_

Partition 2

~———

—
~

Partition 3

~———

Site 1

T2| T3] . T2|T3]...
— —
S—— c———
Partition 1 Partition 1
N~ — S
— —
S—— S~
Partition 2 Partition 2
" "
— —
c—— ——
Partition 3 Partition 3
N ~——

Site 2 Site 3

Step 1: Determine the
order for a batch of
transactions

Deterministic Concurrency Control

l l User transactions l

Sequencer

T1]T2

— T
~

Partition 1

~——

—
~_

Partition 2

~———

—
~

Partition 3

T2|T3].

—
~

Partition 1

~———

—
~

Partition 2

~———

— S
S

Partition 3

~———

Site 1

~———

Site 2

—
~

Partition 1

~——

T
S

Partition 2

"

—
~

Partition 3

12|T3]...

~——

Site 3

Step 1: Determine the
order for a batch of
transactions

Step 2: Replicate and
persist the inputs of these
transactions

— input size < data log size

Deterministic Concurrency Control

l l User transactions l

Sequencer

T1]T2

— T
~

Partition 1

~——

—
~_

Partition 2

~———

—
~

Partition 3
~———

Site 1

T1|T2]T3]. T2|T3]...
— —
S—— c———
Partition 1 Partition 1
S — e — e
— —
S—— S~
Partition 2 Partition 2
" "
— —
c—— ——
Partition 3 Partition 3
N ~——
Site 2 Site 3

Step 1: Determine the
order for a batch of
transactions

Step 2: Replicate and
persist the inputs of these
transactions

— input size < data log size

Step 3: Each replica
executes transactions
deterministically without
2PC or replication

Calvin]

Goal: Deterministically execute a batch of transactions using parallel
hardware

[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

10

Calvin]

Goal: Deterministically execute a batch of transactions using parallel
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

11

Calvin]

Goal: Deterministically execute a batch of transactions using parallel
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

Execution process:
— A single thread acquires all locks following the deterministic order

— Worker threads execute transactions when their locks are acquired
=> Limitation 2: the single locking thread can be a performance bottleneck

12

[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012

Calvin Example

T1: read(y), write(x)
T2: read(z), write(y)

T3: write(z), write(x)

The locking thread performs the following:
— Lock y (SH) and x (EX) and dispatch T1 for execution
—Lock z (SH) and add T2's EX lock request into y’'s waiting queue
— Add T3's EX lock requests into z's and y’s waiting queues

13/32

Aria Deterministic Concurrency Control

No requirement of knowing read/write sets

— All transactions in a batch read from the same snapshot and write to local
write sets, in parallel

— Deterministically decide what transactions can commit based on the access
set.

— If abort, deterministically move to next batch

No global locking thread
Batch i T, T, T3 Ty

Batchi + 1 T, T5 T6 T7

Committed Aborted Unprocessed

11/32

Key Technique: Deterministic Reservation “]

For each write(tuple x) by T

\ tuple x
reservation[h(x)] = min(T.ID, reservation[h(x)])

Hash h()

oo o0 (o o]

Write reservation table

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012. 22127

Key Technique: Deterministic Reservation “]

For each write(tuple x) by T

\ tuple x
reservation[h(x)] = min(T.ID, reservation[h(x)])

Hash h()
After the entire batch is executed, T can commit if mn.n
— For every write w, T.ID = reservation[h(w)] =2 | es oo
—For every read r, T.ID < writes[h(r)]

Write reservation table

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012. 22127

Key Technique: Deterministic Reservation “]

For each write(tuple x) by T

\ tuple x
reservation[h(x)] = min(T.ID, reservation[h(x)])

Hash h()
After the entire batch is executed, T can commit if ﬂn-ﬂ
— For every write w, T.ID = reservation[h(w)] =2 | es oo
—For every read r, T.ID < writes[h(r)]

Write reservation table

Intuition: Write-after-read (WAR) write-after-read write-after-read

dependencies must point from right to left m

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012. 22127

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x)

T2: read(z), write(y) B

Write reservation table
T3: write(z), write(x)

13/32

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x)
T2: read(z), write(y)

T, oo oo

Write reservation table
T3: write(z), write(x)

13/32

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x)

T, T, oo

1

T2: read(z), write
(z) (y) Write reservation table

T3: write(z), write(x)

13/32

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x) ---

T2: read(z), write(y) ho 2 1
Write reservation table

T3: write(z), write(x)

13/32

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x) ---

T2: read(z), write(y) I 1l 15

Write reservation table
T3: write(z), write(x) Abort

For every write w, T.ID = reservation[h(w) |
For every read r, T.ID < writes[h(r)]

Aria Example

Deterministic reservation => deterministic results for parallel
execution

T1: read(y), write(x) ---

T2: read(z), write(y) ho 1z T3

Write reservation table
T3: write(z), write(x) Abort

write-after-read write-after-read

For every write w, T.ID = reservation[h(w) |
For every read r, T.ID < writes[h(r)] @ @ @
write-after-write

13/32

Limitation of Basic Aria

Observation: sometimes cannot commitin T1, T2, T3 order,
but can commitin T3, T2, T1 order

14/32

Limitation of Basic Aria

Observation: sometimes cannot commitin T1, T2, T3 order,
but can commitin T3, T2, T1 order

T2: read(x), write(y) T, T, T;
T3: read(y), write(z) Write reservation table

14/32

Limitation of Basic Aria

Observation: sometimes cannot commitin T1, T2, T3 order,
but can commitin T3, T2, T1 order

T2: read(x), write(y) T, T, T;
T3: read(y), write(z) Write reservation table

write-after-read write-after-read

14/32

Limitation of Basic Aria

Observation: sometimes cannot commitin T1, T2, T3 order,
but can commitin T3, T2, T1 order

T2: read(x), write(y) T, T, T;
T3: read(y), write(z) Write reservation table

write-after-read write-after-read

Basic Aria requires all WAR dependencies

to point left, which is too restrictive!

14/32

Optimization: Deterministic Reordering

Goal: Deterministically change the transaction order

Key Idea: The execution is serializable as long as the dependency
graph has no cycle

24/27

Optimization: Deterministic Reordering

For each write(tuple x) write-res[h(x)] = min(T.ID, write-res[h(x)])
For each read(tuple x) read-res[h(x)] = min(T.ID, read-res[h(x)])

After the entire batch is executed, T can commit if
— For every write w, T.ID = write-res [h(w)]
— For every read r, T.ID < write-res[h(r)] or for every write w, T.ID < read-res[h(w) |

O

Node allowed in basic Aria Nodes allowed in optimized Aria
Only left-pointing arrows permitted Disallow left-in and left-out turns

24/27

Optimization: Deterministic Reordering

For each write(tuple x) write-res[h(x)] = min(T.ID, write-res[h(x)])
For each read(tuple x) read-res[h(x)] = min(T.ID, read-res[h(x)])

After the entire batch is executed, T can commit if
— For every write w, T.ID = write-res [h(w)]
— For every read r, T.ID < write-res[h(r)] or for every write w, T.ID < read-res[h(w) |

O

Node allowed in basic Aria Nodes allowed in optimized Aria
Only left-pointing arrows permitted Disallow left-in and left-out turns

The algorithm is deterministic with no central bottleneck 4177

Evaluation — Overall (YCSB)

Throughput (txns/sec)
0
o
=)
A\

B
Aria Calvin-1 Calvin-2 Calvin-3 Calvin-4 Calvin-6 PB

A YCSB workload: 480k keys , 80/20 read/write, 10 keys per transaction, uniform distribution, 12 threads

25127

Evaluation — Deterministic Reordering

—&— Aria -¥- Ariaw/o D.R. Calvin —ie— PB

<

—— —

N e ——

Throughput (txns/sec)
N &) ~
o
o
~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Skew factor

A YCSB workload: we vary the skew factor from 0 to 1

26/27

Conclusions

Aria supports deterministic transaction execution with no prior
knowledge of the read/write sets

Aria does not use a single thread to lock tuples sequentially

Deterministic reordering further improves the performance of Aria

19/32

Q/A — Deterministic DBMS

Aria in a geo-distributed deployment with high network latency?
Hybrid Aria and traditional OCC/MVCC?

Aria (and deterministic DB in general) with interactive transactions?
Aria with long-running transactions (potentially read-only)?
Overhead of deterministic reordering?

Limitations or workloads where Aria would underperform?

34

Next Lecture

Alexandre Verbitski, et al., Amazon Aurora: Design Considerations for
High Throughput Cloud-Native Relational Databases. SIGMOD, 2017

35

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf

	Slide 1
	Slide 2: Today’s Paper: Deterministic DBMS
	Slide 3: Distributed DBMS Overhead: Replication
	Slide 4: Distributed DBMS Overhead: Replication
	Slide 5: Distributed DBMS Overhead: Replication
	Slide 6: Deterministic Concurrency Control
	Slide 7: Deterministic Concurrency Control
	Slide 8: Deterministic Concurrency Control
	Slide 9: Deterministic Concurrency Control
	Slide 10: Calvin [1]
	Slide 11: Calvin [1]
	Slide 12: Calvin [1]
	Slide 13: Calvin Example
	Slide 14: Aria Deterministic Concurrency Control
	Slide 15: Key Technique: Deterministic Reservation [2]
	Slide 16: Key Technique: Deterministic Reservation [2]
	Slide 17: Key Technique: Deterministic Reservation [2]
	Slide 18: Aria Example
	Slide 19: Aria Example
	Slide 20: Aria Example
	Slide 21: Aria Example
	Slide 22: Aria Example
	Slide 23: Aria Example
	Slide 24: Limitation of Basic Aria
	Slide 25: Limitation of Basic Aria
	Slide 26: Limitation of Basic Aria
	Slide 27: Limitation of Basic Aria
	Slide 28: Optimization: Deterministic Reordering
	Slide 29: Optimization: Deterministic Reordering
	Slide 30: Optimization: Deterministic Reordering
	Slide 31: Evaluation – Overall (YCSB)
	Slide 32: Evaluation – Deterministic Reordering
	Slide 33: Conclusions
	Slide 34: Q/A – Deterministic DBMS
	Slide 35: Next Lecture

