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Distributed DBMS Overhead: Replication
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Deterministic Concurrency Control

Determine a batch of transactions and their order
– Each replica (i.e., site) executes the batch deterministically 
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Deterministic Concurrency Control

Step 1: Determine the 
order for a batch of 
transactions

Step 2: Replicate and 
persist the inputs of these 
transactions  

– input size < data log size

Step 3: Each replica 
executes transactions 
deterministically without 
2PC or replication
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Calvin [1] 

Goal: Deterministically execute a batch of transactions using parallel 
hardware

10[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012
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Calvin [1] 

Goal: Deterministically execute a batch of transactions using parallel 
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

Execution process: 
– A single thread acquires all locks following the deterministic order

– Worker threads execute transactions when their locks are acquired 

=> Limitation 2: the single locking thread can be a performance bottleneck

12[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012



Calvin Example

The locking thread performs the following:
– Lock y (SH) and x (EX) and dispatch T1 for execution

– Lock z (SH) and add T2’s EX lock request into y’s waiting queue

– Add T3’s EX lock requests into z’s and y’s waiting queues

13/32

T1: read(y), write(x)       

T2: read(z), write(y)           

T3: write(z), write(x)



No requirement of knowing read/write sets
– All transactions in a batch read from the same snapshot and write to local 

write sets, in parallel

– Deterministically decide what transactions can commit based on the access 
set. 

– If abort, deterministically move to next batch

No global locking thread

Aria Deterministic Concurrency Control

Committed Aborted Unprocessed

𝑇1 𝑇2 𝑇3 𝑇4

𝑇2 𝑇5 𝑇6 𝑇7

Batch 𝑖

Batch 𝑖 + 1
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Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T

reservation[ h(x) ] = min(T.ID, reservation[ h(x) ])
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Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T

reservation[ h(x) ] = min(T.ID, reservation[ h(x) ])

After the entire batch is executed, T can commit if
– For every write w, T.ID = reservation[ h(w) ]

– For every read r, T.ID ≤ writes[ h(r) ]

0 1 … n

∞ ∞ ∞

Write reservation table

Hash h()

tuple x

T1 T2 T3

write-after-read write-after-read
Intuition: Write-after-read (WAR) 
dependencies must point from right to left 
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Aria Example
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Aria Example
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execution
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T3: write(z), write(x)

Commit

Commit

Abort

For every write w, T.ID = reservation[ h(w) ]

For every read r, T.ID ≤ writes[ h(r) ] T1 T2 T3
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Limitation of Basic Aria

Observation: sometimes cannot commit in T1, T2, T3 order, 

but can commit in T3, T2, T1 order
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𝑥 𝑦 𝑧

𝑇1 𝑇2 𝑇3

Write reservation table

T1 T2 T3

write-after-read write-after-read

Basic Aria requires all WAR dependencies 

to point left, which is too restrictive!



Optimization: Deterministic Reordering

Goal: Deterministically change the transaction order 

Key Idea: The execution is serializable as long as the dependency 

graph has no cycle

24/27



Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[ h(x) ] = min(T.ID, write-res[ h(x) ])

For each read(tuple x)  read-res[ h(x) ] = min(T.ID, read-res[ h(x) ])

After the entire batch is executed, T can commit if

– For every write w, T.ID = write-res [ h(w) ]

– For every read r, T.ID ≤ write-res[ h(r) ] or for every write w, T.ID ≤ read-res[ h(w) ]
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Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[ h(x) ] = min(T.ID, write-res[ h(x) ])

For each read(tuple x)  read-res[ h(x) ] = min(T.ID, read-res[ h(x) ])

After the entire batch is executed, T can commit if

– For every write w, T.ID = write-res [ h(w) ]

– For every read r, T.ID ≤ write-res[ h(r) ] or for every write w, T.ID ≤ read-res[ h(w) ]

The algorithm is deterministic with no central bottleneck
24/27



Evaluation – Overall (YCSB)

A YCSB workload: 480k keys , 80/20 read/write, 10 keys per transaction, uniform distribution, 12 threads
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Evaluation – Deterministic Reordering

A YCSB workload: we vary the skew factor from 0 to 1

26/27



Conclusions

Aria supports deterministic transaction execution with no prior 
knowledge of the read/write sets

Aria does not use a single thread to lock tuples sequentially 

Deterministic reordering further improves the performance of Aria

19/32



Q/A – Deterministic DBMS

34

Aria in a geo-distributed deployment with high network latency? 

Hybrid Aria and traditional OCC/MVCC? 

Aria (and deterministic DB in general) with interactive transactions? 

Aria with long-running transactions (potentially read-only)? 

Overhead of deterministic reordering? 

Limitations or workloads where Aria would underperform?



Next Lecture

Alexandre Verbitski, et al., Amazon Aurora: Design Considerations for 
High Throughput Cloud-Native Relational Databases. SIGMOD, 2017

35

https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f22/papers/aurora-sigmod-17.pdf
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