WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 3: Predicate Transfer

Xiangyao Yu
9/11/2025

Today’s Papers: Predicate Transfer

Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries

Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

University of Wisconsin-Madison

yyangs73@wise.edu

yxy, parisj@cs.wisc.edu

ABSTRACT

This paper presents predicate transfer, a novel method that optimizes
join performance by pre-filtering tables to reduce the join input
sizes. Predicate transfer generalizes Bloom join, which conducts
pre-filtering within a single join operation, to multi-table joins such
that the filtering benefits can be significantly increased. Predicate
transfer is inspired by the seminal theoretical results by Yannakakis,
which uses semi-joins to pre-filter acyclic queries. Predicate trans-
fer generalizes the theoretical results to any join graphs and use
Bloom filters to replace semi-joins leading to significant speedup.
Evaluation shows predicate transfer can outperform Bloom join by
3.3 on average on TPC-H benchmark.

1 INTRODUCTION

Joins constitute a substantial portion of query execution time, and
have been studied and optimized for decades, in topics including
binary joins (with a main focus on hash joins) (10, 11, 14, 21], join
ordering in multi-way joins (23, 29-31, 34], and recent emerging
‘worst-case optimal join algorithms [16, 26, 35, 36]. One effective
principle for enhancing join performance is to minimize the join
input sizes by pre-filtering rows that will not appear in the join
result. Predicate pushdown [15, 17, 18, 20, 24, 33] exemplifies this
principle by applying local predicates on a table before executing
any join operation.

‘The Bloom join [13, 22, 28] extends this principle beyond a single
table. In the Bloom join, a Bloom filter is constructed using the join
key in one table, and sent to the ather table to filter out rows that
do not pass the filter—these rows do not match any keys in the
first table and will not participate in the join. The Bloom join can
effectively reduce the join input sizes thereby reducing the query
runtime. However, existing Bloom join solutions can perform such
pre-filtering only within a single join operation.

In this paper, we further generalize the pre-filtering principle
dividual tables
to pre-filter multiple other tables in the query, further reducing the
join input sizes. We call this new technique predicate transfer.
‘A predicate on one table Ty can be transferred (.. in the form
of a Bloom filter) to a table T that joins with Ty. T can apply
the predicate and further transfer it to table Ty that joins with Ty
(but Ty does not necessarily join with Ts). The transfer process
can propagate further such that the original predicate can filter
multiple other tables (e.g, Tz, T3, etc.). The conventional Bloom join
is 2 special case of the more lized predicate transfer—a Bloom
join is a one-hop predicate transfer.

Namely, we

The idea of predicate transfer is inspired by the seminal pa-
per [38] by Yannakakis. For an acyclic query that equi-joins mul-
tiple tables, the Yannakakis algorithm achieves the theoretically
‘maximum pre-filtering selectivity by adding an additional semi-join
phase prior to the actual joins, which filters a table by semi-joining
it with other tables. The process filters one table at a time following
the tree structure of the query until every predicate is spread across
all joining tables.

For all its theoretical elegance, the Yannakakis algorithm has not
yet made its way into modern database engines. The main obstacles
are the costly hash table accesses and high memery consumption in
the semi-join phase. Predicate transfer aims to address these practi-
cal limitations. It significantly reduces the overhead of semi-joins
by passing succinet data structures like Bloom filters. Although
predicate transfer no longer achieves the thearetically maximum
filtering selectivity, it achieves much higher performance overall.

In the rest of the paper, we first describe the background and
related work of predicate transfer in Section 2, with a focus on the
Bloom join and Yannakakis algorithm. We then describe the design
space of predicate transfer in detail, and our current heuristics in
different design dimensions in Section 3. We report preliminary
performanee evaluations on TPC-H [1] in Section 4, which shows
that an average predicate transfer can outperform Bloom join by
3.3X (up to 61x) and the Yannakakis algorithm by 4.8 (up to 47x)
respectively. Finally, Section 5 concludes the paper and discusses
future work.

2 BACKGROUND AND RELATED WORK

This section presents the background and related work in Bloom
join (Section 2.1) and the Yannakakis algorithm (Section 2.2).

2.1 Bloom join
A Bloom filter [9, 12, 25, 27, 32] is a compact probabilistic data
structure that determines whether an element exists in a set. A
Bloom filter has no false negative but may have false positives. In
a Bloom join of two tables, a Bloom filter is constructed on one
table (typically the smaller one) using the join key. The filter is then
sent and applied to cach row in the other table; if a row does not
pass the filter, it matches no row in the first table and should not
participate in the join. Since testing a Bloom filter is generally faster
than performing a join, Bloom join can speedup query processing,
especially when the join is selective. Modern OLAP DBMSs (e.g.,
Oracle [5], Redshift (6], Snowilake [7], Databricks [8]) widely adopt
Bloom filters to accelerate join execution.

Most existing Bloom 2 join n]gonnums can be applied to only a
single joi ti table can only

This paper is published under the Creative by

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sitcs with the appropriate attzbution, pravided that you
attribute the eriginal work to the authors and CIDR 2624. 14th Annuial Conference on
Inovative Data Systems Research (CIDR "24).Jonuary 1417, 2024, Chaminade, USA.

be used to pre-filter rows in the other table it joins with; namely,
the predicate is transferred in one-hop and one-direction. Some
prior work [39] has extended the idea to datasets with star schemas,
allowing all dimension tables to teansfer local predicates to the fact

CIDR 2024

Debunking the Myth of Join Ordering: Toward Robust SQL
Analytics

JUNYI ZHAO, Tsinghua University, China
KAI SU, Tsinghua University, China

YIFEI YANG, University of Wisconsin-Madison, USA
XIANGYAO YU, University of Wisconsin-Madison, USA
PARASCHOS KOUTRIS, University of Wisconsin-Madison, USA
HUANCHEN ZHANG?, Tsinghua University, China

Join order optimization is critical in achieving good query performance. Despite decades of research and
practice, modern query optimizers could still generate inferior join plans that are orders of magnitude slower
than optimal. Existing research on robust query ing often lacks th on j

while ificing query pe In this paper, we rediscover the recent Predicate Transfer
technique from a robustness point of view. We introduce two new algorithms, LargestRoot and SafeSubjoin,
and then propose Robust Predicate Transfer (RPT) that is provably robust against arbitrary join orders of an
acyclic query. We integrated Robust Predicate Transfer with DuckDB, a state-of-the-art analytical database,
and evaluated against all the queries in TPC-H, JOB, TPC-DS, and DSB benchmarks. Our experimental results
show that RPT improves join-order robustness by orders of magnitude compared to the baseline. With RPT,
the largest ratio between the maximum and minimum execution time out of random join orders for a single
acyclic query is only 1.6% (the ratio is close to 1 for most evaluated queries). Meanwhile, applying RPT also
improves the end-to-end query performance by ~1.5x (per-query geometric mean). We hope that this work
sheds light on solving the practical join ordering problem.

CCS Concepts: » Information systems — Database query processing.

Additional Key Words and Phrases: Robust query processing, Yannakakis algorithm

ACM Reference Format:

Junyi Zhao, Kai Su, Yifei Yang, Xiangyao Yu, Paraschos Koutris, and Huanchen Zhang,. 2025. Debunking the
Myth of Join Ordering: Toward Robust SQL Analytics. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 146
(June 2025), 28 pages. https://doi.org/10.1145/3725283

1 Introduction

A query optimizer is a critical and perhaps most difficult component to develop in a relational
database management system (RDBMS). Despite decades of research and practice, modern query
optimizers are still far from reliable [52]. Among the many challenges, join ordering is the crown
jewel of query optimization. Determining an optimal join order requires not only an efficient
algorithm to search the enormous plan space but also an accurate cardinality estimation of the

*Huanchen Zhang is also affiliated with the Shanghai Qi

hi Institute. Corresponding author.

Authors’ Contact Information: Junyi Zhao, Tsinghua University, Beijing, China, zhaojy20@nmails.tsinghua.edu.cn; Kai Su,
Tsinghua University, Beijing, China, suk23@mails.tsinghua.edu.cn; Yifei Yang, University of Wisconsin-Madison, Madison,
USA, yyang673@wisc.edu; Xiangyao Yu, University of Wisconsin-Madison, Madison, USA, yxy@es.wisc.edu; Paraschos
Koutris, University of W Madison, Madison, USA, paris@cs.wisc.cdu; Huanchen Zhang, Tsinghua University,
Beijing, China, huanchen@tsinghua.edu.cn

‘This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART146

https://doi.org/10.1145/3725283

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 146. Publication date: June 2025.

SIGMOD 2025

Accelerate Distributed Joins with Predicate Transfer

YIFEl YANG, University of Wisconsin-Madison, USA
XIANGYAO YU, University of Wisconsin-Madison, USA

Join is one of the most critical operators in query processing. One effective way to optimize multi-join
performance is to pre-filter rows thzl du not conlnbute to the query output. Techniques that reflect this principle
include predicate pushd Y i Bloom join, predicate transfer, etc. Among
these, predicate transfer is the slale-nf the art pm-ﬁltumg Ieduuquz that removes most non-centributing
rows through a series of Bloom filters thereby
However, the existing predicate transfer technique has several hmltalmns Fxrsr. the current algorithm
works only on a single-threaded system while real analytics databases for large workloads are typically
distributed across multiple nodes. Second, some predicate transfer steps may not filter out any rows in the
destination table thus introd overhead with no speedup. This issue is exacerbated in a
d envi , where y predicate transfers lead to extra network latency and traffic.
In this paper, we aim to address both limitations. First, we explore the design space of distributed predicate
transfer and propose cost-based adaptive execution to maximize the performance for each individual transfer
step. Second, we develop a pruning algorithm to effectively remove unnecessary transfers that do not have
positive top We imp both techniques and evaluate on a distributed analytics
query engine. Results on standard OLAP benchmarks including TPC-H and DSB with a scale factor up to
400 show that distributed predicate transfer can imprave the query performance by over 3, and reduce the
amount of data exchange by over 2.7x.

CCS Concepts: « Information systems — Query optimization.

Additional Key Words and Phrases: Query opti ion, Di: joinp ing, Predicate transfer
ACM Reference Format:

Yifei Yang and Xiangyao Yu. 2025. Accelerate Distributed Joins with Predicate Transfer. Proc. ACM Manag.
Data 3, 3 (SIGMOD), Article 122 (June 2025), 27 pages. https://doi.org/10.1145/3725259

1 Introduction

Join [7, 13, 20, 34] is one of the most critical operators in query processing. One effective principle to
optimize multi-join queries is to pre-filter rows that do not contribute to the join result prior to actual
joins. Optimizations that reflect this principle include predicate pushdown [27, 30, 31, 33, 36, 58],
Bloem join [15, 35, 49], Lookahead Information Passing (LIP) [66], semi-join reduction [10], and the
Yannakakis algorithm [64]. These algorithms differ in the number of rows that can be pre-filtered
and the efficiency of the pre-filtering process. Prominently, the Yannakakis algorithm can pre-filter
all non-contributing rows for acyclic queries, through a series of semi-join operators across the
joining tables.

Recently, predicate transfer [63] was developed as the state-of-the-art protocol following the
pre-filtering principle. Predicate transfer replaces semi-joins in the Yannakakis algorithm with
Bloom filters, thereby combining the strong theoretical guarantees with high pre-filtering efficiency.
Each transfer uses a Bloom filter constructed on one table to reduce its neighbor tables. With a

Authors’ Contact Information: Yifei Yang, yyang673@wisc.edu, University of Wisconsin-Madison, Madison, USA; Xiangyao
Yu, yxy@cs.wisc.edu, University of Wisconsin-Madison, Madison, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART122

https://doi.org/10.1145/3725259

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 122. Publication date: June 2025,

SIGMOD 2025

Outline

* Power of pre-filtering

* Yannakakis algorithm
 Predicate transfer

* Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Potential of Pre-Filtering

In multi-join queries, many rows do not contribute to query result

Potential of Pre-Filtering

In multi-join queries, many rows do not contribute to query result

Example: TPC-H Q3
CUSTOMER ORDER LINEITEM

D} | D e

Rows participating in joins after local filtering
20% 49% 53%

Potential of Pre-Filtering

In multi-join queries, many rows do not contribute to query result

Example: TPC-H Q3
CUSTOMER

>

ORDER

LINEITEM

pq |

Rows participating in joins after local filtering

20%

49%

Rows contributing to query results

5.6%

<1%

o3% 4-100x

size reduction!
<0.5%

Most rows are filtered during the joins

Potential of Pre-Filtering

In multi-join queries, many rows do not contribute to query result

Goal: Identify non-contributing rows and pre-filter
them efficiently before executing joins

Rows participating in joins after local filtering

20% 49% 53%
R e it 4100
ows contributing to query results size reduction!
5.6% <1% <0.5%

Most rows are filtered during the joins

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

TPC-H
Query
Q2
Q3
Q4
Q5
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Geomean

Optimal
pre-filter
559
80
20
56
122
669
12
8
25
25

TPC-H Optimal

Size Reduction Factor Query prefilter
Q2 559
a3 80 | o

Orders-of-magnitude reduction of join table size 8‘5‘ gg

(total # of rows in all joining tables) Q7 199
Q8 669
Q9 12
Q10 8
Q11 25
Q12 25
Q13 1
Q14 2
Q15 1
Q16 6
Q17 931
Q18 16827
Q19 232
Q20 1489
Q21 23
Q22 2

Geomean 44

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

TPC-H Optimal
Query pre-filter

Q2 559
Q3 80
Q4 20
Q5 56
Q7 122
Q8 669
Q9 12
Q10 8
Q11 25
Q12 25
Q13 1
Q14 2
Q15 1
Q16 6
Q17 931
Q18 16827
Q19 232
Q20 1489
Q21 23
Q22 2

Geomean 44

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

TPC-H Optimal
Query pre-filter

Q2 559
Q3 80
Q4 20
Q5 56
Q7 122
Q8 669
Q9 12
Q10 8
Q11 25
Q12 25
Q13 1
Q14 2
Q15 1
Q16 6
Q17 931
Q18 16827
Q19 232
Q20 1489
Q21 23
Q22 2

| Geomean 44

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

As prior work, Bloom join can pre-filter only a
small fraction of non-contributing rows

TPC-H Optimal . .
: Bloom join
Query pre-filter
Q2 559 2
Q3 80 1
Q4 20 17
Q5 o6 1
Q7 122
Q8 669 22
Q9 12
Q10 8
Q11 25 15
Q12 25 22
Q13 1 1
Q14 2 1
Q15 1 1
Q16 6 5
Q17 931 1
Q18 16827 1
Q19 232 59
Q20 1489 2
Q21 23 1
Q22 2 3
| Geomean 44 3

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

As prior work, Bloom join can pre-filter only a
small fraction of non-contributing rows

Research Question: How to efficiently
identify non-contributing rows?

TPC-H Optimal . .
: Bloom join
Query pre-filter
Q2 559 2
Q3 80 1
Q4 20 17
Q5 56 1
Q7 122
Q8 669 22
Q9 12
Q10 8
Q11 25 15
Q12 25 22
Q13 1 1
Q14 2 1
Q15 1 1
Q16 6 5
Q17 931 1
Q18 16827 1
Q19 232 959
Q20 1489 2
Q21 23 1
Q22 2 3
| Geomean 44 3

Size Reduction Factor

Orders-of-magnitude reduction of join table size
(total # of rows in all joining tables)

As prior work, Bloom join can pre-filter only a
small fraction of non-contributing rows

Research Question: How to efficiently
identify non-contributing rows?

Answer (Partial): Yannakakis Algorithm

TPC-H Optimal . .
: Bloom join
Query pre-filter
Q2 559 2
Q3 80 1
Q4 20 17
Q5 o6 1
Q7 122
Q8 669 22
Q9 12
Q10 8
Q11 25 15
Q12 25 22
Q13 1 1
Q14 2 1
Q15 1 1
Q16 6 5
Q17 931 1
Q18 16827 1
Q19 232 59
Q20 1489 2
Q21 23 1
Q22 2 3
| Geomean 44 3

Outline

» Power of pre-filtering

* Yannakakis algorithm

* Predicate transfer

* Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Yannakakis Algorithm

Pre-filter all non-contributing rows for acyclic queries

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989 6/14

Yannakakis Algorithm

Pre-filter all non-contributing rows for acyclic queries

 The join graph forms a tree /\

R2 R3

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989 6/14

Yannakakis Algorithm

Pre-filter all non-contributing rows for acyclic queries A
* The join graph forms a tree /\
* Forward pass: Semi-join each table with its children R2 R3
R3 <« R3 X R4 / \
R3 <R3 X R5 R4 R5
R1<—R1X R2
R1<—R1 X R3

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989 6/14

Yannakakis Algorithm

Pre-filter all non-contributing rows for acyclic queries

* The join graph forms a tree /\

* Forward pass: Semi-join each table with its children R2 R3
R3 < R3 X R4 N
R3 <R3 X R5 R4 R5
R1<—R1X R2
R1<—R1 X R3

- Backward pass: Semi-join each table with its parent

R2 «— R2 xR1
R3 «— R3 xR1
R4 «<— R4 xR3
R5 «— R5 xR3

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989 6/14

Yannakakis Algorithm

Pre-filter all non-contributing rows for acyclic queries o
* The join graph forms a tree /\
* Forward pass: Semi-join each table with its children R2 R3
R3 —R3 X R4 TN
R3 <R3 X R5 R4 R5
R1<—R1X R2
R1<—R1 X R3

- Backward pass: Semi-join each table with its parent

R2 «— R2 xR1
R3 «— R3 xR1
R4 «<— R4 xR3
R5 «— R5 xR3

« Perform regular joins on the reduced tables

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989 6/14

Yannakakis Algorithm — Limitation

Yannakakis algorithm can pre-filter all non-contributing rows for
acyclic queries

But semi-joins are expensive! [ProFilter Time B8 Join Time

Exec. Time (sec)
I
|

)
|

[1] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. VLDB 1989

7114

Outline

» Power of pre-filtering

* Yannakakis algorithm

* Predicate transfer

* Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Predicate Transfer

Key ldea: Replace semi-joins with Bloom filters
« Bloom filters are much faster than semi-joins

« Bloom filters have false positives, which is ok since false positives will be
filtered by the join phase

8/14

Predicate Transfer

Key ldea: Replace semi-joins with Bloom filters

R1
Forward pass BF /}
R2 R3

» Create bloom filter on join key
« Use bloom filter to reduce parent table BF /;\

R4 R5

8/14

Predicate Transfer

Key ldea: Replace semi-joins with Bloom filters

Forward pass /\ BF
» Create bloom filter on join key
» Use bloom filter to reduce parent table /\
Backward pass

 Create bloom filter on join key
* Use bloom filter to reduce child table

8/14

Predicate Transfer

Key ldea: Replace semi-joins with Bloom filters

Forward pass /\

. . R2 R3
» Create bloom filter on join key
» Use bloom filter to reduce parent table /\
R4 R5
Backward pass

 Create bloom filter on join key
* Use bloom filter to reduce child table

Perform regular joins on the reduced tables

8/14

Sideway Information Passing (SIP)

R1 R1 Join
R2 R3 Join R2 R345
B };5
Step 1 Step 2

Sideway information passing (SIP)
— transfer, join, transfer, join, transfer, join, ...

Predicate Transfer (PT)

— transfer, transfer, transfer, ..., join, join, join, ...

27

Generalization of Predicate Transfer

* Any join graph topology (even cyclic queries)

* Any transfer schedule (our heuristic: from small to large tables)
 Transfer path pruning

* Any filter type

« Support outer-join, aggregation, and UDF

* Multiple transfer graphs

9/14

Evaluation

10 GB TPC-H, Single-threaded execution on FlexPushdownDB

NOPREDTRANS BLoOM]JOIN YANNAKAKIS PREDTRANS

20 9.2 34

Norm. Runtime
[[
o n

=
n

=
=]

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Geomean

Predicate transfer outperforms Bloom Join by 3.3x

Predicate transfer reduces join table size by 19% (optimal pre-filter is
44x and Bloom join is 3x%)
Yannakakis algorithm underperforms due to semi-join overhead

10/14

Predicate Transfer is Robust

Performance of predicate transfer is insensitive to join order

|- NOPREDTRANS W% BLOOMJOIN YANNAKAKIS PREDTRANSI

"f._.-l"‘ 4':' 1 2&5 1051
i
& 20,
L% 101
0 1 1 %
de,‘t &e‘[é_e;‘t
N s

13/14

Outline

» Power of pre-filtering

* Yannakakis algorithm

* Predicate transfer

 Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Transfer Schedule

Default transfer heuristic in PT: from small to large tables
(small2large)

@ -@ Assume |R| < |S]| < |T]|

Transfer does not follow a tree

@ No Yannakakis guarantee!

32

Transfer Schedule

New transfer heuristic in Robust PT: pick largest table as root
(LargestRoot)

@ @ Assume |R| < [S]| < |T]

Ensure the transfer graph is

@ always a tree
RPT is more robust than PT

33

Robustness to Join Ordering

) s o] DuckDB | 2.0 [1 DuckDB - RPT
S~ l EEE RPT 10 d] @
oD 2.0 & D @ [B
= 0.0~ S — e
> 1.5
2 10 L0 s 3 4 5 6 7 9 10 11 12 13 14 15 16 17
205 1 ﬁg i} z 2.0
g OOD D_i_ =¥ & E = [54_ 1.0 i] @] :
ZO'O-S = 0.0éﬁ-#* i%*gj_gj;::&_cf-; _I_.i.#{]iéé__b._i]i@ EB_}_
1.0 -
335 7 & 910111821 1018 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Queries Templates
(a) TPC-H (b) JOB

DuckDB + RPT is 44-56% faster than DuckDB

RPT queries are orders-of-magnitude more robust to join ordering
— Randomly generated join orders

PT vs. RPT

[S—
o

1 PT Bl RPT

©S oo o 9o o 9o
W K L N 3 oo O

Normalized execution
time (log10 scale)

= = - -

JOB 32a JOB 32b TPCDS 54 TPCDS 83
Queries

S o o o
—_— O = N

For some queries, LargestRoot is more robust than Small2large

Robustness to Transfer Schedule

[u—
n

| : | : .
,Qéii%&jﬁﬁié%ii%éi]%%g

= o

Normalized
execution time
[a—

o

<
W

2 3 4 5 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
Queries

(a) TPC-H

[
wn

R T T e

Normalized
execution time
[

)

0.5 1234567 8 9101112131415161718192021222324252627282930313233

Templates

(b) JOB

Performance robust to transfer schedule under LargestRoot heuristics

Outline

» Power of pre-filtering

* Yannakakis algorithm

* Predicate transfer

* Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Distribute Each Transfer Step

R S
Step 1 g D Step 1
BF Build JK
BF.R BF Probe
-
Step 2 = Step2 |BF.R,
Filtered S

(a) Predicate Transfer Step

(a) Design 1

Each node builds local BF, and broadcasts it to other nodes
38

Distribute Each Transfer Step

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

Stem;- z- 2E . 28 ,;-

BF.R, 3 BF.R, BF.R, BF R, ‘% BF.R,
| \ﬁ
BF,.R, BF.R, | BF.R, __BF.R,

| wrrrrrrrs |

Step2 |BF. H1 , BF.R;
; ezza

| rrrrress |

BF1

BF.R, BF.R,

E;F2
— 5 |—>- L -

(a) Design 1 (b) Design 2 (c) Design 3

Step 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2

Step 1 Step 1 Step 1

RyJK; RiJKz S1.0K; S,.0K, Rz.JK; RaK; Sp.0K; Sp.0K, Ry.JK; RiJK; S1.JK; S,.0K, Rz JK; RaJK; Sp.0K; S;.0K;

To Node 2 I =

Ry JK; RiJK; SiJK; S;.JK; Ro.JK; RoJK; So.JK; S,.JK,

To Node 1 BF.Ry.; BF.R;.; i BF.R..; BF.R;.; BF.S,., BF.S,, | BF.S,., BF.S..,

Ry.JK, i-dlﬁ L [Rudk, w
n
Step 2 = SidK, =
RaJKy o Ra.JK; ni S,.JK,
‘ ‘ Step 2 |BFR;,
s o 3 L.
1.JK SQL 1Kz ShuKe SR, ShUK, STk, Sk, Sy JK; ShJK, ShJK, SpJK,
To Node 2 — o 1Ky Sh g 2
S1.IK Sc: S50K, 4 . BF.S'., EF& BF.S',., BF.Sh. BF.S' BF“Z BF.S'.; BF.S%,
Step 3 (i o T -éb_s:.z To Node 2 c==h To Node 1 To Node 2 ¢==> fo
81Kz s S2JKe s BF.S' BF.S%., BF.S'. BF.S%.
| . s, eI s ez
P8 pme—{Tls.. mme—mmls. O°P° pme—{ls. gme—mmls..
BF.S'. s, BF.S%. S, BF.S'.; s, BF.S%2 s,
(a) SHFL-VAL (b) SHFL-BF-SRC (c) SHFL-BF-DST

39

Prune Transfer Steps

tid:0 | tid:0
sl\ [(o] |s4 51\ [(0] ‘54
custkey custkey
1 1
{(1)} e {(0, 1, 2)} {(1)} e {(0, 1)}
{(0, 1)} bl @) {© {(0, 1)) Heo l o) (1)
s \ orderkey[| . 52 \ orderkey I <3
@y | 'ineitem | 00 o) @y | ineitem | oton
tid: 2 tid: 2
@ Prune
(a) TPC-H Q3 (b) Variant of TPC-H Q3

Fig. 5. Pruning for Predicate Transfer in TPC-H Q3 and its variant.

Ineffective transfer steps can be pruned for better performance

Evaluation

Execution Time (sec)

‘I:I NoPT B QS (I PI“ [I]]]]]]]] Pre-Filter Phase Join Phase [1 Other
T 251
g 20
= 15
§
= 101
g
g 5
F ...'4 = e VA CAAL A 7 A, Vi
PSPPI PP PFPIF PSPPI PP P PP
10{ | No Prune
8 [1 Prune
6_
4_
0L = [] BT “ e
Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q21

41

Outline

» Power of pre-filtering

* Yannakakis algorithm

* Predicate transfer

* Robust predicate transfer

* Distributed predicate transfer
* Discussion and future work

Questions

* Handle recursive or cyclic join graphs?
 Alternatives to Bloom filters?

* What if BF creates too many false positives?
* What if table size estimations are inaccurate?
* How to integrate PT into an existing DB?

43

Project |Ideas—Predicate Transfer

 Enhance PT performance for cyclic queries

» Evaluate PT in latest DuckDB version

« Evaluate PT for more workloads

* Dynamically tune Bloom filter size

* More advanced pruning techniques

« Study PT's effect for reducing intermediate data size
« Study PT with workloads that do not fit in memory

44

Before Next Lecture

Submit review for

Viktor Leis, et al., How Good Are Query Optimizers, Really?. VLDB,
2015

45

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/job.pdf

	Slide 1
	Slide 2: Today’s Papers: Predicate Transfer
	Slide 3: Outline
	Slide 4: Potential of Pre-Filtering
	Slide 5: Potential of Pre-Filtering
	Slide 6: Potential of Pre-Filtering
	Slide 7: Potential of Pre-Filtering
	Slide 8: Size Reduction Factor
	Slide 9: Size Reduction Factor
	Slide 10: Size Reduction Factor
	Slide 11: Size Reduction Factor
	Slide 12: Size Reduction Factor
	Slide 13: Size Reduction Factor
	Slide 14: Size Reduction Factor
	Slide 15: Outline
	Slide 16: Yannakakis Algorithm
	Slide 17: Yannakakis Algorithm
	Slide 18: Yannakakis Algorithm
	Slide 19: Yannakakis Algorithm
	Slide 20: Yannakakis Algorithm
	Slide 21: Yannakakis Algorithm – Limitation
	Slide 22: Outline
	Slide 23: Predicate Transfer
	Slide 24: Predicate Transfer
	Slide 25: Predicate Transfer
	Slide 26: Predicate Transfer
	Slide 27: Sideway Information Passing (SIP)
	Slide 28: Generalization of Predicate Transfer
	Slide 29: Evaluation
	Slide 30: Predicate Transfer is Robust
	Slide 31: Outline
	Slide 32: Transfer Schedule
	Slide 33: Transfer Schedule
	Slide 34: Robustness to Join Ordering
	Slide 35: PT vs. RPT
	Slide 36: Robustness to Transfer Schedule
	Slide 37: Outline
	Slide 38: Distribute Each Transfer Step
	Slide 39: Distribute Each Transfer Step
	Slide 40: Prune Transfer Steps
	Slide 41: Evaluation
	Slide 42: Outline
	Slide 43: Questions
	Slide 44: Project Ideas—Predicate Transfer
	Slide 45: Before Next Lecture

