WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 5: Column Store

Xiangyao Yu
9/18/2025

Today’s Paper: C-Store

C-Store: A Column-oriented DBMS

Mike Stonebraker®, Daniel J. Abadi*, Adam Batkin®, Xuedong Chen*, Mitch Cherniack®,
Miguel Ferreira”, Edmond Lau®, Amerson Lin", Sam Madden", Elizabeth O Neil',
Pat O’Neil', Alex Rasin’, Nga Tran*, Stan Zdonik"

"MIT CSAIL
Cambridge, MA

“Brandeis University
Waltham, MA

Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.
Among the many differences in its design are:
storage of data by column rather than by row,
careful coding and packing of objects into storage
including main memory during query processing,
storing an overlapping collection of column-
oriented projections, rather than the current fare of
tables and indexes, a non-traditional
implementation of transactions which includes high
availability and snapshot isolation for read-only
transactions, and the extensive use of bitmap
indexes to complement B-tree structures.

We present preliminary performance data on a
subset of TPC-H and show that the system we are
building, C-Store, is substantially faster than
popular commercial products. Hence, the
architecture looks very encouraging.

1. Introduction

Most major DBMS vendors implement record-oriented
storage systems, where the attributes of a record (or tuple)
are placed contiguously in storage. With this row store
architecture, a single disk write suffices to push all of the
fields of a single record out to disk. Hence, high
performance writes are achieved, and we call a DBMS
with a row store architecture a write-optimized system.
These are especially effective on OLTP-style applications.

In contrast, systems oriented toward ad-hoc querying
of large amounts of data should be read-optimized. Data
warehouses represent one class of read-optimized system,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or 1o republish, requires a fee andlor special permission from the
Endowment

Proceedings of the 31" VLDB Conference,

Trondheim, Norway, 2005

VLDB 2005

'UMass Boston
Boston, MA

*Brown University
Providence, R1

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read-mostly applications include customer
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems. In
such environments, a column store architecture, in which
the values for each single column (or attribute) are stored
contiguously, should be more efficient. This efficiency
has been di ated in the hy marketplace by
products like Sybase IQ [FREN95, SYBA04], Addamark
[ADDAO4], and KDB [KDBO04]. In this paper, we discuss
the design of a column store called C-Store that includes a
number of novel features relative to existing systems.

With a column store architecture, a DBMS need only
read the values of columns required for processing a given
query, and can avoid bringing into memory irrelevant
attributes. In warchouse environments where typical
queries involve aggregates performed over large numbers
of data items, a column store has a sizeable performance
advantage. However, there are several other major
distinctions that can be drawn between an architecture that
is read-optimized and one that is write-optimized.

Current relational DBMSs were designed to pad
attributes to byte or word boundaries and to store values in
their native data format. It was thought that it was too
expensive to shift data wvalues onto byte or word
boundaries in main memory for processing. However,
CPUs are getting faster at a much greater rate than disk
bandwidth is increasing. Hence, it makes sense to trade
CPU cycles, which are abundant, for disk bandwidth,
which is not. This tradeoff appears especially profitable in
a read-mostly environment.

There are two ways a column store can use CPU cycles
to save disk bandwidth. First, it can code data elements
into a more compact form. For example, if one is storing
an attribute that is a customer’s state of residence, then US
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable
length character string for the name of the state requires
many more. Second, one should densepack values in
storage. For example, in a column store it is
straightforward to pack N values, each K bits long, into N
* K bits. The coding and compressibility advantages of a

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

Relational Database

Afioute Lm\b\“e i\mbu‘e >

Record 1

Record 2

Record 3

A relation (table) has rows and columns

Row Store vs. Column Store

Row Store
M 100 fall
F 95 fall
F 98 spring
M 79 spring

Row store: fields in a row are contiguously stored on disk
— Write optimized

Row Store vs. Column Store

Row Store Column Store
M 100 fall M 100 fall
F 95 fall f = UL
F 98 spring
F 98 spring :
M 79 spring
M 79 spring

Row store: fields in a row are contiguously stored on disk
— Write optimized

Column store: fields in a column are contiguously stored on disk
— Read optimized

Row Store vs. Column Store

Row Store Column Store
M 100 fall M 100 fall
F 95 fall f = UL
F 98 spring
F 98 spring :
M 79 spring
M 79 spring

Advantages of column store
— Only needed attributes are loaded into memory

Row Store vs. Column Store

Row Store Column Store
M 100 fall M 100 fall
F 95 fall f = UL
F 98 spring
F 98 spring
M 79 spring
M 79 spring

Advantages of column store
— Only needed attributes are loaded into memory
— Store data in more compact layout (avoid word and page alignment)

Row Store vs. Column Store

Row Store Column Store
M 100 fall M 100 fall
F 95 fall f = UL
F 98 spring
F 98 spring
M 79 spring
M 79 spring

Advantages of column store
— Only needed attributes are loaded into memory
— Store data in more compact layout (avoid word and page alignment)
— Easier to compress data

Row Store vs. Column Store

Row Store update Column Store
one row
M 100 fall < M 100 fall
F 95 fall s 2 UL
F 98 spring
F 98 spring
M 79 spring
M 79 spring f I I

update all columns
Advantages of column store P

— Only needed attributes are loaded into memory
— Store data in more compact layout (avoid word and page alignment)
— Easier to compress data

Disadvantages of column store
— Updates are less efficient

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

12

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

RAM RAM RAM RAM RAM RAM

S e o=

— = = = =

%

13

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

« Each piece of data is stored in multiple replicas for high availability
— If one replica fails, can read from other replicas

GPU

RAM RAM RAM RAM RAM RAM

S e o=

— = = = =

%

14

C-Store Architecture — Shared Nothing

» Data is partitioned across servers in a cluster

« Each piece of data is stored in multiple replicas for high availability
— If one replica fails, can read from other replicas

» Separate reads and writes to different stores

Writeable Store (WS)

GPU

RAM RAM RAM

lTuple Mover

% % g g % g Read-optimized Store (RS)

— = = = =

%

15

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

16

C-Store Data Model

Projection: A group of columns sorted on the same attributes

Example:

EMP1 (name, age| age)

EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)

DEPTI1 (dname, floor| floor)

17

C-Store Data Model

Projection: A group of columns sorted on the same attributes

Example:

o Sort key
EMP1 (name, age| age) \
EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)

DEPTI1 (dname, floor| floor)

18

C-Store Data Model

Projection: A group of columns sorted on the same attributes

Example:

EMP1 (name, age| age)

EMPZ2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)

DEPTI1 (dname, floor| floor)

Same attribute can belong to multiple projections, and be sorted in
different orders

19

C-Store Data Model

Segment: Each projection is horizontally partitioned into segments
— Called row groups in parquet format

EMP1 (name, age| age)

name age

Segment 1

Segment 2

20

C-Store Data Model

Storage Key: Each segment associates every data value of every
column with a storage key, SK

— For records in RS, SK is the physical position in the column

name age SK

Segment 1

Segment 2

CONOUTARWNE CONOUVNHLWNE

21

C-Store Data Model

Join Indices store the mapping between projections that are
anchored at the same table (one-to-one mapping)

EMP1 (name, age| age) EMP3 (name, salary| salary)

name age SK name Salary SK

Segment 1

Segment 2

CONOUTARWNE CONOUVNHLWNE
CONOUVAWNE CONOUVTAWNE

22

C-Store Data Model

Join Indices store the mapping between projections that are
anchored at the same table (one-to-one mapping)

— (segment_ID, SK) to locate the matching record

EMP1 (name, age| age) EMP3 (name, salary| salary)
name age SK Join index name salary SK
1 (seg2, SK=3) 1
2 (segl, SK=5) 2
3 (segl, SK=2) 3
5 s Segment 1
6 6
7 7
8 8
1 1
2 2
3 3
5 ¢ Segment 2
6 6
7 7
8 8

23

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

24

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

25

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

26

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Discussion Question:

Is there an encoding scheme that can achieve
higher compression ratio than bitmap encoding?
(Hint: consider 4 unique values)

27

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Type 3: Self-order, many distinct values
— Delta encoding

28

Data Encoding

Type 1: Self-order, few distinct values
— (value, first-appear-position, number-of-appearance)
— Similar to run length encoding (RLE)

Type 2: Foreign-order, few distinct values
— Bitmap encoding (value, bitmap)

Type 3: Self-order, many distinct values
— Delta encoding

Type 4: Foreign-order, many distinct value
— No encoding

29

Other Data Encoding Schemes

Bitpacking
Frame of reference (FOR)
Dictionary encoding

30

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

31

Query Execution

 Decompress

» Select

* Mask

* Project

« Sort

* Aggregation

» Concat

* Permute

 Join

* Bitstring operators

32

Query Execution

 Decompress

» Select

* Mask

* Project

« Sort

* Aggregation

» Concat

* Permute

 Join

* Bitstring operators

Impact on query optimizers
— Choose the best projections to run queries
— Cost model includes the compression type

33

Query Execution Example

Join In row store

D

=

select select

34

Query Execution Example

Join In row store

select

>

=

select

Join in column store

Use (SID, SK) pairs to join with other columns
(late materialization)

i

o - \

Mask Mask
|:|select 1 select g
1 —_—
0 0

35

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

36

Transaction Updates

Write Store (WS)
—1:1 mapping between RS and WS
— Storage keys are explicitly stored
— No compression
— Snapshot isolation

Writeable Store (WS)

Tuple Mover

Read-optimized Store (RS)

Transaction Updates

Write Store (WS)
—1:1 mapping between RS and WS
— Storage keys are explicitly stored
— No compression
— Snapshot isolation

Writeable Store (WS)

Tuple Mover

Read-optimized Store (RS)

Tuple mover
— Periodically merge WS and RS into a new RS’

38

Agenda

Row store vs. column store

C-store
— Architecture
— Data model
— Data encoding
— Query execution
— Transaction updates
— Evaluation

39

Evaluation

No materialized view in baselines

C-Store Row Store Column Store

1.987 GB 4.480 GB 2.650 GB

Query C-Store Row Store Column
Store
Q1 0.03 6.80 2.24
Q2 0.36 1.09 0.83
Q3 4.90 93.26 29.54
Q4 2.09 722.90 22.23
Q5 0.31 116.56 0.93
Q6 8.50 652.90 32.83
Q7 2.54 265.80 33.24

40

Evaluation

No materialized view in baselines

With materialized view in baselines

C-Store Row Store Column Store
1.987 GB 4.480 GB 2.650 GB
Query C-Store Row Store Column
Store
Q1 0.03 6.80 2.24
Q2 0.36 1.09 0.83
Q3 4.90 93.26 29.54
Q4 2.09 722.90 22.23
Q5 0.31 116.56 0.93
Q6 8.50 652.90 32.83
Q7 2.54 265.80 33.24

C-Store Row Store Column Store
1.987 GB 11.900 GB 4.090 GB
Query C-Store Row Store Column

Store
Q1 0.03 0.22 2.34
Q2 0.36 0.81 0.83
Q3 4.90 49 38 29.10
Q4 2.09 21.76 22.23
Q5 0.31 0.70 0.63
Q6 8.50 47 .38 25.46
Q7 2.54 18 47 6.28

Questions

* Why join index, why not having all columns in one projection?
» Real-world implementation? Vertica

* More detalils on tuple mover

* Columnar benefits shrink for SELECT *?

* How does C-store work in cloud-native databases?
* How are projections chosen in practice?

42

https://en.wikipedia.org/wiki/Vertica

Before Next Lecture

Submit review for

Laurens Kuiper, et al., Robust External Hash Aggregation in the Solid

State Age. ICDE 2024

43

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/duckdb-buffer.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/duckdb-buffer.pdf

	Slide 1
	Slide 2: Today’s Paper: C-Store
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Relational Database
	Slide 6: Row Store vs. Column Store
	Slide 7: Row Store vs. Column Store
	Slide 8: Row Store vs. Column Store
	Slide 9: Row Store vs. Column Store
	Slide 10: Row Store vs. Column Store
	Slide 11: Row Store vs. Column Store
	Slide 12: Agenda
	Slide 13: C-Store Architecture — Shared Nothing
	Slide 14: C-Store Architecture — Shared Nothing
	Slide 15: C-Store Architecture — Shared Nothing
	Slide 16: Agenda
	Slide 17: C-Store Data Model
	Slide 18: C-Store Data Model
	Slide 19: C-Store Data Model
	Slide 20: C-Store Data Model
	Slide 21: C-Store Data Model
	Slide 22: C-Store Data Model
	Slide 23: C-Store Data Model
	Slide 24: Agenda
	Slide 25: Data Encoding
	Slide 26: Data Encoding
	Slide 27: Data Encoding
	Slide 28: Data Encoding
	Slide 29: Data Encoding
	Slide 30: Other Data Encoding Schemes
	Slide 31: Agenda
	Slide 32: Query Execution
	Slide 33: Query Execution
	Slide 34: Query Execution Example
	Slide 35: Query Execution Example
	Slide 36: Agenda
	Slide 37: Transaction Updates
	Slide 38: Transaction Updates
	Slide 39: Agenda
	Slide 40: Evaluation
	Slide 41: Evaluation
	Slide 42: Questions
	Slide 43: Before Next Lecture

