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Today’s Paper: Buffer Management

Algorithmica 1986
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Buffer management for temporary data 

Unified memory management 

Future work 



Table Data vs. Temporary Data

Table data
– Data from input tables

– Page-based buffer management is widely used for table data 

– Transparently handle data movement between disk and memory

Temporary data
– E.g., hash tables (for join or aggregation), sort buffers, etc.

– Traditionally malloc-based, not in page granularity 

– Must explicitly move data between disk and memory 
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System Architecture

A database management system (DBMS) 
manipulate data in memory

– Data on disk must be loaded to memory 
before processed

The unit of data movement is a page
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Page-Based Buffer Management

Page granularity: Data managed in 
page granularity 

Indirection: Each page is identified with 
a page ID;  a hash table stores whether 
the page is in memory or on disk. 

Page placement is handled by the buffer 
manager and not controlled by 
operators
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Page-Based Buffer Management

Table data can be organized in a B-tree
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Page Replacement Policy 

Important question: what pages should stay in memory? 
– LRU (Lease recently used)

– Clock

– MRU (Most recently used)

– FIFO, Random, …

Insight: the optimal buffer replacement and allocation policies 
depend on the data access pattern, which is relatively easy to predict 
in a DBMS compared to hardware or OS
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LRU Replacement
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Replace the least-recently used (LRU) item in the buffer

Intuition: more recently used items will more likely to be used again in the future



LRU Replacement Example
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Memory Incoming requests

0, 1, 2, 3, 0, 1, 2, 4, 0, 1, 2, 5, …

Disk

Example: memory contains 4 buffers. LRU replacement policy



A Different Access Pattern
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Memory Incoming requests

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, …

Disk

Example: memory contains 4 buffers. LRU replacement policy



MRU Replacement
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Replace the most-recently used (LRU) item in the buffer

Intuition: avoid the cache thrashing problem in the previous example



MRU Replacement Example
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Memory Incoming requests

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, …

Disk

Example: memory contains 4 buffers. MRU replacement policy



Query Locality Set Model

Observations
– DBMS supports a limited set of operations

– Data reference patterns are regular and predictable

– Complex reference patterns can be decomposed into simple patterns

Buffer allocation decisions: 

1. Locality set: The appropriate buffer pool size for a query

2. Replacement policy 
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QLSM – Sequential References 
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Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any



QLSM – Sequential References 
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Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially 
– E.g., sort-merge join with duplicate join keys

– Locality set: size of largest cluster

– Replacement policy: LRU or FIFO (buffer size ≥ cluster size), MRU (otherwise)



QLSM – Sequential References 

Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially 
– E.g., sort-merge join with duplicate join keys

– Locality set: size of largest cluster

– Replacement policy: LRU or FIFO (buffer size ≥ cluster size), MRU (otherwise)

Looping Sequential (LS): repeatedly read something sequentially 
– E.g. nested-loop join

– Locality set: size of the file being repeated scanned. 

– Replacement policy: MRU
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QLSM – Random References 

Independent random (IR): truly random accesses 
– E.g., index scan through a non-clustered (e.g., secondary) index

– Locality set: one page or b pages (b unique pages are accessed in total)

– Replacement: any

Clustered random (CR): random accesses with some locality 
– E.g., join between non-clustered, non-unique index as inner relation and 

clustered, non-unique outer relation

– Locality set: size of the largest cluster

– Replacement policy : 

 LRU or FIFO (buffer size ≥ cluster size)

 MRU (otherwise)
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Traditional DB: Two Memory Pools 

Page-based buffer pool for persistent data 
– Data spilling is implicitly handled by buffer manager 

Malloc-based buffer pool for temporary data
– Data spilling is not supported, or

– Data spilling is explicitly handled by operator 
21

Sizes of pools are 

statically determined 
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DuckDB Unified Memory Management 

Insight: Try to use page-based data structures as much as possible  
– Operators (e.g., group-by aggregation) are designed accordingly 

Benefits: 
– Disk spilling is implicitly managed through buffer manager 

– Graceful performance degradation when data exceeds memory

Challenges:
– Allow arbitrary eviction without corrupting pointers 

– Some data structures are non-trivial to store in pages (e.g., hash tables)
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Allocation Types

Persistent data 
– Fixed page size (256 KB)

Temporary data 
– Non-paged allocations (cannot be spilled)

– Paged fixed-size allocations   => the most common use case

– Paged variable-size allocations 
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Page Layout for Variable-Size Row

Design requirements: 
– 1) Use a row-major data 

representation with fixed-
size rows

– 2) Store variable-size data 
on separate pages

– 3) Use explicit addressing 
for variable-size data

– 4) Be spillable to storage 
without additional 
serialization. 
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External Hash Aggregation
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Evaluation – Thin Variant
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Evaluation – Thin Variant
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Evaluation – Wide Variant
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Evaluation – Wide Variant
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Future Work
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• Apply the idea to OLTP setting 

• Better eviction policy for unified memory management 

• Adapt other blocking operators besides hash aggregation 

– E.g., join, sort, window operators 

• Coordinate when multiple memory-intensive operators are active at 

the same time 



Questions – Buffer Management
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• How common do real-world intermediates exceed memory?

• Challenges in extending to join, sorts, etc.?

• Multi-tenancy? (budget memory between simultaneous operators)

• Effective on skewed data?

• Row-major format for temporary tables? Good idea?

• How does the idea extend to distributed system? 



Discussion

Problem: How to manage spilling for temporary data 

DuckDB approach: Page-based data structures as much as possible  
– Benefit: Data spilling is implicitly handled by buffer manager 

– Challenge: Nontrivial for certain data structures and operators

Traditional approach: Use malloc for temporary data 
– Benefit: intuitive data structures and operators 

– Challenge: Data spilling must be explicitly handled

Discussion question: Is there a framework that allows intuitive 
data structures & operators and yet supports efficient spilling? 
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Before Next Lecture

Submit review for

David DeWitt, Jim Gray, Parallel Database Systems: The Future of 
High Performance Database Processing. Communications of the 
ACM, 1992
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https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/paralleldb.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/paralleldb.pdf
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