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Abstract—Analytical database systems offer high-performance
in-memory aggregation. If there are many unique groups, tem-
porary query intermediates may not fit RAM, requiring the use
of external storage. However, switching from an in-memory to
an external algorithm can degrade perf sharply.

We revisit external hash aggregation on modern hardware,
aiming instead for robust performance that aveids a “perfor-
mance cliff” when memory runs out.

To achieve this, we introduce two techniques for handling
temporary query intermediates. First, we propose unifying the
memory of y a data, Second,
we propose using a page layout that can be spilled to disk
despite being optimized for main memory performance. These
two techniques allow operator implementations to process larger-
than-memory query intermediates with only minor modifications.

‘We integrate these into DuckDB’s parallel hash aggregation.
Experimental results show that our implementation gracefully de-
grades per as query i iates exceed the available
memory limit, while main memory performance is competitive
with other analytical database systems.

Index Terms—relational databases, database query processing,
aggregation

I. INTRODUCTION

Until late in the 20* century, main memory was expensive;
h iti database systems (DBMS)
optimized for disk access, as this was their major bottleneck.
“Spillable” data structures like B-trees |]I| were used not only
to speed up retrieval of persistent data but also inside query
operators. As a result, these systems could process workloads
that were larger than the small amount of available memory.

Around the 2000s, RAM prices decreased, and database
systems optimized for main memory (2], for both persistent
data and temporary query intermediates [3]. In these systems,
main memory access became the bottleneck, and techniques
were devised to make better use of CPU caches [4]. DBMSes
have now evolved into large monolithic database servers, often
with large amounts of RAM at their disposal.

Pure in-memory systems are not ical, however.

== Minimal Memory Utilization
= Full Memory Utilization
= Memory Limit

Execution Time

Data size

Fig. 1. Conceptual aggregation performance vs data size (log-log scale). When
switching from an in-memory strategy to an external strategy that minimizes
memory usage, performance degradation is harsh and sudden (a “performance
cliff”). A unified strategy for in-memory and external aggregation that utilizes
all available memory degrades more gracefully (performance-robust).

This body of research has focused on using storage for
persistent data but, for the most part, ignored temporary query
intermediates. Analytical (OLAP) systems, which frequently
process large volumes of data and often have large query

di became mai after DBMSes optimized
for main memory. As systems became able to process queries
on arbitrary-sized persistent tables, intermediate results can
- depending on the query - also grow to arbitrary sizes. In
these cases, many modern OLAP systems either abort queries
or switch to a traditional disk-based algorithm that is orders
of magnitude slower, introducing a “performance cliff”, as
illustrated in

Given the advancements of OLAP systems in the past two
decades @]-IQJ and the research into buffer management
on modern hardware (6], (8], OLAP systems should be able
to perform more robustly when intermediates exceed main
memory. However, traditional buffer managers have fixed-size
pages and a statically allocated pool. This inflexibility makes
them undesirable for intermediates. Therefore, temporary data
is allocated differently. Managing the entire memory pool, i.e.,

Efficient utilization of secondary storage, e.g., by caching, is
key to providing good performance at a low cost [5]. In recent
years, there has been a renewed interest in buffer management,
specifically for solid-state memory, that offers much higher
bandwidth and lower latency than magnetic disk [6][8]. Data
management systems are now reverting to being disk-based
without sacrificing in-memory performance [2]
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p and temporary data, in a cooperative manner may
help systems better utilize available memory .

In this paper, we go beyond Cooperative Memory Man-
agement and take a wnified approach to memory manage-
ment for persistent and temporary data. We have developed
a ialized page layout i y for temporary data to
accommodate this. We have integrated this into the hash
aggregation operator of DuckDB, our in-process analytical
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Abstract. In this paper we present a new algorithm, DBMIN, for managing the buffer pool of a
relational database management system. DBMIN is based on a new model of relational query
behavior, the query locality set model (QLSM). Like the hot set model, the QLSM has an advantage
over the stochastic models due to its ability to predict future reference behavior. However, the QLSM
avoids the potential problems of the hot set model by separating the modeling of reference behavior
from any particular buffer management algorithm. After introducing the QLSM and describing the
DBMIN algorithm, we present a performance evaluation methodology for evaluating buffer manage-
ment algorithms in a multiuser environment. This methodology employed a hybrid model that
combines features of both trace-driven and distribution-driven simulation models. Using this model,
the performance of the DBMIN algorithm in a multiuser environment is compared with that of the
hot set algorithm and four more traditional buffer replacement algorithms.

Key Words. Buffer management, Database systems, Page replacement strategies, Hybrid simulation,
Performance evaluation.

1. Introduction. In this paper we present a new algorithm, DBMIN, for manag-
ing the buffer pool of a relational database management system. DBMIN is based
on a new model of relational query behavior, the query locality set model (QLSM.)
Like the hot set model [Sacc 1], the QLSM has an advantage over stochastic
models due to its ability to predict future reference behavior. However, the QLSM
avoids the potential problems of the hot set model by separating the modeling
of reference behavior from any particular buffer management aigorithm. After
introducing the QLSM and describing the DBMIN algorithm, the perform-
ance of the DBMIN algorithm in a multiuser environment is compared with
that of the hot set algorithm and four more traditional buffer replacement
algorithms.

A number of factors motivated this research. First, although Stonebraker [Ston
2] convincingly argued that conventional virtual memory page replacement
algorithms (e.g., least recently used (LRU)) were generally not suitable for a
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Table Data vs. Temporary Data

Table data
— Data from input tables
— Page-based buffer management is widely used for table data
— Transparently handle data movement between disk and memory

Temporary data
— E.g., hash tables (for join or aggregation), sort buffers, etc.
— Traditionally malloc-based, not in page granularity
— Must explicitly move data between disk and memory
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System Architecture

A database management system (DBMS)
CPU manipulate data in memory

— Data on disk must be loaded to memory
before processed

Buffer | Buffer | Buffer

Memory The unit of data movement is a page

—
N—

Disk |Fage




Page-Based Buffer Management

hash
table
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Frame | Frame
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Page granularity: Data managed in
page granularity

Indirection: Each page is identified with
a page ID; a hash table stores whether
the page is in memory or on disk.

Page placement is handled by the buffer
manager and not controlled by
operators



Page-Based Buffer Management
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Page Replacement Policy

Important question: what pages should stay in memory?
— LRU (Lease recently used)
— Clock
— MRU (Most recently used)
— FIFO, Random, ...

Insight: the optimal buffer replacement and allocation policies
depend on the data access pattern, which is relatively easy to predict
in a DBMS compared to hardware or OS



LRU Replacement

Replace the least-recently used (LRU) item in the buffer

Intuition: more recently used items will more likely to be used again in the future
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LRU Replacement Example

Example: memory contains 4 buffers. LRU replacement policy

Memory
— TN
N—_ A
Disk
N~ -

Incoming requests

0,1,2,3,0,1,2,4,0,1,2,5, ...
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A Different Access Pattern

Example: memory contains 4 buffers. LRU replacement policy

Memory
— TN
N—_ A
Disk
N~ -

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...
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MRU Replacement

Replace the most-recently used (LRU) item in the buffer

Intuition: avoid the cache thrashing problem in the previous example
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MRU Replacement Example

Example: memory contains 4 buffers. MRU replacement policy

Memory
— TN
N—_ A
Disk
N~ -

Incoming requests

0,1,2,3,4,0,1,2,3,4, ...
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Query Locality Set Model

Observations
— DBMS supports a limited set of operations
— Data reference patterns are regular and predictable
— Complex reference patterns can be decomposed into simple patterns

Buffer allocation decisions:
1. Locality set: The appropriate buffer pool size for a query

2. Replacement policy

15



QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page
— Replacement policy: any

16



QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page
— Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
— E.g., sort-merge join with duplicate join keys
— Locality set: size of largest cluster
— Replacement policy: LRU or FIFO (buffer size = cluster size), MRU (otherwise)

0p

R
0
1
1
1
2
3
4

1010 O==]==]O

17



QLSM - Sequential References

Straight sequential (SS): each page in a file accessed only once
— E.g., select on an unordered relation
— Locality set: one page
— Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
— E.g., sort-merge join with duplicate join keys
— Locality set: size of largest cluster
— Replacement policy: LRU or FIFO (buffer size = cluster size), MRU (otherwise)

Looping Sequential (LS): repeatedly read something sequentially

— E.g. nested-loop join
— Locality set: size of the file being repeated scanned.

— Replacement policy: MRU
18



QLSM — Random References

Independent random (IR): truly random accesses
— E.g., index scan through a non-clustered (e.g., secondary) index

— Locality set: one page or b pages (b unique pages are accessed in total)
— Replacement: any

Clustered random (CR): random accesses with some locality

— E.g., join between non-clustered, non-unique index as inner relation and
clustered, non-unique outer relation

— Locality set: size of the largest cluster S

: 0

— Replacement policy : R.Index i
LRU or FIFO (buffer size 2 cluster size) 1
MRU (otherwise) 1] 1 5

¥ N g
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Traditional DB: Two Memory Pools
A é Memory Limit

100%

® Sizes of pools are

——  —— — © statically determined
0 0, 0F

0% : >
Time

Memory
Utilization

Page-based buffer pool for persistent data
— Data spilling is implicitly handled by buffer manager

Malloc-based buffer pool for temporary data
— Data spilling is not supported, or

— Data spilling is explicitly handled by operator ),
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DuckDB Unified Memory Management

Insight: Try to use page-based data structures as much as possible
— Operators (e.g., group-by aggregation) are designed accordingly

Benefits:
— Disk spilling is implicitly managed through buffer manager
— Graceful performance degradation when data exceeds memory

Challenges:
— Allow arbitrary eviction without corrupting pointers
— Some data structures are non-trivial to store in pages (e.g., hash tables)

23



Allocation Types

Persistent data
— Fixed page size (256 KB)

Temporary data
— Non-paged allocations (cannot be spilled)
— Paged fixed-size allocations => the most common use case
— Paged variable-size allocations

24



Page Layout for Variable-Size Row

Design requirements:

— 1) Use a row-major data
representation with fixed-
Size rows

— 2) Store variable-size data
on separate pages

— 3) Use explicit addressing
for variable-size data

—4) Be spillable to storage
without additional
serialization.

(MetaData 1

(Row Page: 1
Row Offset: 0
Var Page: 1
Var Offset: 0
Var Ptr: 0x042
(Count: 5

Y,

Var Page: 1

Var Offset: 42
Var Ptr: 0x042
(Count: 1 )

Row Page 1

(MetaData 2)\\\\\\
(Row Page: 2 Y
Row Offset: @

\\\\\\\\\r

(MetaData 3

(Row Page: 2 R
Row Offset: 1
Var Page: 2
Var Offset: 0
Var Ptr: 0x210
(Count: 4

(MetaData 4

(Row Page: 3

Row Offset: 0
Var Page: 2
Var Offset: 31
Var Ptr: 0x210
(Count: 2

(MetaData 5

(Row Page: 3 A
Row Offset: 2
Var Page: 3

Var Offset: 0
Var Ptr: 0x840

&pount: 3 b

Row Page 3

-

Var Page 1

25



External Hash Aggregation

Morsel N

(" Thread-

e ——

. — — — — — — — — — —
——

Local Pre-Aggregation)

~[Exchange &
_’

Thread 2 ]

Aggregate

4
ggf‘egate

S

& Morsel 1

( Qutput )

ForenT D)

Salted Linear Probing Hash Table

\

Radix Partitioned Page Layout
é Radix Partition 1 )
Page  Page 1 )
. = -
Hash Table
N 0x042 |
S NS
ix Partition 2
N 0x084 | A LS00
N 0x126
N 0x168 | :
) Radix Partltlon R
Page Ps E Page 2 ][ Page 1 )
\

Fig. 3. DuckDB’s hash aggregation. Morsels are assigned to threads until all input data has been read. During phase one, each thread pre-aggregates data
in a small fixed-size linear probing hash table with one level of indirection, i.e., offsets obtained from hashes access an array of pointers pointing to tuples.
Tuples are radix partitioned and stored using DuckDB’s spillable page layout, enabling larger-than-memory aggregation. After pre-aggregation, partitions are
exchanged and aggregated partition-wise in parallel. Fully aggregated partitions are immediately scanned, effectively becoming morsels in the next pipeline.
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Evaluation — Thin Variant

TABLE II
EXECUTION TIME IN SECONDS FOR THE THIN VARIANT OF ALL GROUPINGS AT SCALE FACTORS 2, 8, 32, AND 128. LOWER IS BETTER. THE LOWEST
EXECUTION TIMES ARE HIGHLIGHTED IN BOLD. ‘A’ DENOTES THAT THE QUERY WAS ABORTED. WE SUMMARIZE BY NORMALIZING EXECUTION TIMES
TO DUCKDB AND THEN TAKING THE GEOMETRIC MEAN.

SF | 2 | 8 | 32 | 128
System | Du Cl Hy Um | Du Cl Hy Um | Du Cl Hy Um | Du Cl Hy Um
Grouping 1 | 0.01 008 0.01 0.02 | 0.03 027 005 004|014 1.10 014 0.16 | 054 4.06 0.54 A
21008 004 013 004 | 044 016 066 0.19 | 2.03 0.75 286 0.68 | 10.80 4.04 12.83 A
31013 030 020 013 (058 121 1.00 0.51 278 6.35 428 224 | 1449 4247 348.10 A
41012 008 0.16 0.07 | 058 029 083 0.28 | 286 1.63 338 122 | 2206 9.80 231.86 A
51005 008 007 005|018 029 036 0.6 | 0.74 157 1.66 054 | 317 941 6.86 A
61008 035 021 0.15]030 142 0.81 055|127 732 327 212 | 580 48.79 213.41 A
71017 037 028 023 072 156 136 087 | 342 8.32 5.61 432 | 24.62 51.57 45752 A
81023 036 027 020|097 151 139 0.78 | 525 8.11 572 344 | 6597 4949 412.86 A
91016 037 030 021 074 153 158 0.78 | 3.59 8.01 6.42 347 | 32.77 46.51 444.50 A
10 1 025 050 041 038 [ 1.10 206 196 150 | 578 11.34 169.63 14.98 | 89.27 77.27 576.68 A
11 (013 013 037 0.18 059 0351 1.71 0.65 | 2.72 259 6.94 286 | 21.38 18.43 413.54 A
12 1 013 013 036 0.18 1059 052 173 065|265 259 6.80 2.84 | 21.89 18.22 411.58 A
131015 0.17 038 022064 070 180 0.79 | 2.87 3.64 724 339 | 2220 28.31 432.33 A

Geometric Mean

Normalized to DuckDB | 100 169 180 1.13 | 1.00 153 198 098 | 1.00 1.69 217 094 | 1.00 148 8.74 A
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Evaluation — Thin Variant

100
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Evaluation — Wide Variant

TABLE 111
EXECUTION TIME IN SECONDS FOR THE WIDE VARIANT OF ALL GROUPINGS AT SCALE FACTORS 2, 8, 32, AND 128. LOWER IS BETTER. THE LOWEST
EXECUTION TIMES ARE HIGHLIGHTED IN BOLD. ‘A’ DENOTES THAT THE QUERY WAS ABORTED. ‘T’ DENOTES THAT THE QUERY TIMED OUT AFTER 600
SECONDS. WE SUMMARIZE BY NORMALIZING EXECUTION TIMES TO DUCKDB AND THEN TAKING THE GEOMETRIC MEAN.

SF | 2 | 8 | 32 | 128

System | Du Cl Hy Um | Du Cl Hy Um | Du Cl Hy Um | Du Cl Hy Um
Grouping 1 | 0.04 0.19 003 0.02]0.16 067 010 0.06 | 063 257 038 A| 257 991 152 A
21042 034 023 022|225 145 107 077 (5279 1841 21111 A | 34728 111.66 499.04 A
31043 059 027 023 (230 256 125 091 | 3000 2639 24330 A | 25629 13350 A
41053 0351 027 023|277 243 128 091 |5346 2619 25335 A | 35096 122.97 T A
51025 058 023 0.3 (080 296 089 044 | 463 3016 313 A | 67.56 287.87 A
61023 072 029 0.7 | 1.0l 324 122 067 | 496 3320 456 A | 7269 15075 37823 A
71051 075 035 029 (256 334 176 122 |30.61 3185 38280 A | 260.12 A T A

g 087 101 042 036 (394 457 196 147 | 6849 3879 48708 A | 407.26 A T A
91059 088 047 032|322 424 218 141 | 4612 3637 45181 A | 331.08 A T T

10 | 075 100 061 042|369 491 269 174 | 64.84 4370 58554 A | 399.46 A T A

11 | 064 083 061 038|322 375 271 1.60 | 60.04 3641 53067 A | 396.53 A T A
12062 079 062 038|332 376 270 1.58 | 6073 3600 33354 A | 382.09 A T A

13 [ 066 083 0.60 038 320 385 267 159 | 5455 37.00 53456 A | 359.95 A T A
Normaycometric Mean | 100 153 077 054 | 1.00 145 070 045 | 1.00 106 454 A | 100 A T A




Evaluation — Wide Variant
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Future Work

* Apply the idea to OLTP setting
* Better eviction policy for unified memory management

* Adapt other blocking operators besides hash aggregation
- E.g., join, sort, window operators

» Coordinate when multiple memory-intensive operators are active at
the same time

32



Questions — Buffer Management

 How common do real-world intermediates exceed memory?

* Challenges in extending to join, sorts, etc.?

» Multi-tenancy? (budget memory between simultaneous operators)
 Effective on skewed data?

 Row-major format for temporary tables”? Good idea?

* How does the idea extend to distributed system?
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Discussion

Problem: How to manage spilling for temporary data

DuckDB approach: Page-based data structures as much as possible
— Benefit: Data spilling is implicitly handled by buffer manager
— Challenge: Nontrivial for certain data structures and operators

Traditional approach: Use malloc for temporary data
— Benefit: intuitive data structures and operators
— Challenge: Data spilling must be explicitly handled

Discussion question: Is there a framework that allows intuitive
data structures & operators and yet supports efficient spilling?
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Before Next Lecture

Submit review for

David DeWitt, Jim Gray, Parallel Database Systems: The Future of

High Performance Database Processing. Communications of the
ACM, 1992
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https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/paralleldb.pdf
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