
Xiangyao Yu

9/23/2025

CS 764: Topics in Database Management Systems

Lecture 6: Buffer Management

1

Today’s Paper: Buffer Management

Algorithmica 1986
2

ICDE 2024

Outline

3

Table data vs. temporary data

Buffer management for table data

– Page-based buffer management

Buffer management for temporary data

Unified memory management

Future work

Table Data vs. Temporary Data

Table data
– Data from input tables

– Page-based buffer management is widely used for table data

– Transparently handle data movement between disk and memory

Temporary data
– E.g., hash tables (for join or aggregation), sort buffers, etc.

– Traditionally malloc-based, not in page granularity

– Must explicitly move data between disk and memory

4

Outline

5

Table data vs. temporary data

Buffer management for table data

– Page-based buffer management

Buffer management for temporary data

Unified memory management

Future work

System Architecture

A database management system (DBMS)
manipulate data in memory

– Data on disk must be loaded to memory
before processed

The unit of data movement is a page

CPU

Disk
Page

6

Buffer

Memory

Buffer Buffer

…

Page-Based Buffer Management

Page granularity: Data managed in
page granularity

Indirection: Each page is identified with
a page ID; a hash table stores whether
the page is in memory or on disk.

Page placement is handled by the buffer
manager and not controlled by
operators

7

CPU

Disk
Page

Frame

Memory

…

Frame Frame

hash

table

Page-Based Buffer Management

Table data can be organized in a B-tree
8

CPU

Disk DiskPage

Frame

Memory

…

Frame Frame

hash

table

CPU

Memory

…

hash

table

Page Replacement Policy

Important question: what pages should stay in memory?
– LRU (Lease recently used)

– Clock

– MRU (Most recently used)

– FIFO, Random, …

Insight: the optimal buffer replacement and allocation policies
depend on the data access pattern, which is relatively easy to predict
in a DBMS compared to hardware or OS

9

LRU Replacement

10

Replace the least-recently used (LRU) item in the buffer

Intuition: more recently used items will more likely to be used again in the future

LRU Replacement Example

11

Memory Incoming requests

0, 1, 2, 3, 0, 1, 2, 4, 0, 1, 2, 5, …

Disk

Example: memory contains 4 buffers. LRU replacement policy

A Different Access Pattern

12

Memory Incoming requests

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, …

Disk

Example: memory contains 4 buffers. LRU replacement policy

MRU Replacement

13

Replace the most-recently used (LRU) item in the buffer

Intuition: avoid the cache thrashing problem in the previous example

MRU Replacement Example

14

Memory Incoming requests

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, …

Disk

Example: memory contains 4 buffers. MRU replacement policy

Query Locality Set Model

Observations
– DBMS supports a limited set of operations

– Data reference patterns are regular and predictable

– Complex reference patterns can be decomposed into simple patterns

Buffer allocation decisions:

1. Locality set: The appropriate buffer pool size for a query

2. Replacement policy

15

QLSM – Sequential References

16

Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any

QLSM – Sequential References

17

0
1
1
1
2
3
4

0
1
1
1
1
5
6
8

R S

Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
– E.g., sort-merge join with duplicate join keys

– Locality set: size of largest cluster

– Replacement policy: LRU or FIFO (buffer size ≥ cluster size), MRU (otherwise)

QLSM – Sequential References

Straight sequential (SS): each page in a file accessed only once
– E.g., select on an unordered relation

– Locality set: one page

– Replacement policy: any

Clustered sequential (CS): repeatedly read a “chunk” sequentially
– E.g., sort-merge join with duplicate join keys

– Locality set: size of largest cluster

– Replacement policy: LRU or FIFO (buffer size ≥ cluster size), MRU (otherwise)

Looping Sequential (LS): repeatedly read something sequentially
– E.g. nested-loop join

– Locality set: size of the file being repeated scanned.

– Replacement policy: MRU

18

QLSM – Random References

Independent random (IR): truly random accesses
– E.g., index scan through a non-clustered (e.g., secondary) index

– Locality set: one page or b pages (b unique pages are accessed in total)

– Replacement: any

Clustered random (CR): random accesses with some locality
– E.g., join between non-clustered, non-unique index as inner relation and

clustered, non-unique outer relation

– Locality set: size of the largest cluster

– Replacement policy :

 LRU or FIFO (buffer size ≥ cluster size)

 MRU (otherwise)

19

0
1
1
1
1
5
6
8

S

R.index

1 1

Outline

20

Table data vs. temporary data

Buffer management for table data

– Page-based buffer management

Buffer management for temporary data

Unified memory management

Future work

Traditional DB: Two Memory Pools

Page-based buffer pool for persistent data
– Data spilling is implicitly handled by buffer manager

Malloc-based buffer pool for temporary data
– Data spilling is not supported, or

– Data spilling is explicitly handled by operator
21

Sizes of pools are

statically determined

Outline

22

Table data vs. temporary data

Buffer management for table data

– Page-based buffer management

Buffer management for temporary data

Unified memory management

Future work

DuckDB Unified Memory Management

Insight: Try to use page-based data structures as much as possible
– Operators (e.g., group-by aggregation) are designed accordingly

Benefits:
– Disk spilling is implicitly managed through buffer manager

– Graceful performance degradation when data exceeds memory

Challenges:
– Allow arbitrary eviction without corrupting pointers

– Some data structures are non-trivial to store in pages (e.g., hash tables)

23

Allocation Types

Persistent data
– Fixed page size (256 KB)

Temporary data
– Non-paged allocations (cannot be spilled)

– Paged fixed-size allocations => the most common use case

– Paged variable-size allocations

24

Page Layout for Variable-Size Row

Design requirements:
– 1) Use a row-major data

representation with fixed-
size rows

– 2) Store variable-size data
on separate pages

– 3) Use explicit addressing
for variable-size data

– 4) Be spillable to storage
without additional
serialization.

25

External Hash Aggregation

26

Evaluation – Thin Variant

27

Evaluation – Thin Variant

28

Evaluation – Wide Variant

29

Evaluation – Wide Variant

30

Outline

31

Table data vs. temporary data

Buffer management for table data

– Page-based buffer management

Buffer management for temporary data

Unified memory management

Future work

Future Work

32

• Apply the idea to OLTP setting

• Better eviction policy for unified memory management

• Adapt other blocking operators besides hash aggregation

– E.g., join, sort, window operators

• Coordinate when multiple memory-intensive operators are active at

the same time

Questions – Buffer Management

33

• How common do real-world intermediates exceed memory?

• Challenges in extending to join, sorts, etc.?

• Multi-tenancy? (budget memory between simultaneous operators)

• Effective on skewed data?

• Row-major format for temporary tables? Good idea?

• How does the idea extend to distributed system?

Discussion

Problem: How to manage spilling for temporary data

DuckDB approach: Page-based data structures as much as possible
– Benefit: Data spilling is implicitly handled by buffer manager

– Challenge: Nontrivial for certain data structures and operators

Traditional approach: Use malloc for temporary data
– Benefit: intuitive data structures and operators

– Challenge: Data spilling must be explicitly handled

Discussion question: Is there a framework that allows intuitive
data structures & operators and yet supports efficient spilling?

34

Before Next Lecture

Submit review for

David DeWitt, Jim Gray, Parallel Database Systems: The Future of
High Performance Database Processing. Communications of the
ACM, 1992

35

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/paralleldb.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/paralleldb.pdf

	Slide 1
	Slide 2: Today’s Paper: Buffer Management
	Slide 3: Outline
	Slide 4: Table Data vs. Temporary Data
	Slide 5: Outline
	Slide 6: System Architecture
	Slide 7: Page-Based Buffer Management
	Slide 8: Page-Based Buffer Management
	Slide 9: Page Replacement Policy
	Slide 10: LRU Replacement
	Slide 11: LRU Replacement Example
	Slide 12: A Different Access Pattern
	Slide 13: MRU Replacement
	Slide 14: MRU Replacement Example
	Slide 15: Query Locality Set Model
	Slide 16: QLSM – Sequential References
	Slide 17: QLSM – Sequential References
	Slide 18: QLSM – Sequential References
	Slide 19: QLSM – Random References
	Slide 20: Outline
	Slide 21: Traditional DB: Two Memory Pools
	Slide 22: Outline
	Slide 23: DuckDB Unified Memory Management
	Slide 24: Allocation Types
	Slide 25: Page Layout for Variable-Size Row
	Slide 26: External Hash Aggregation
	Slide 27: Evaluation – Thin Variant
	Slide 28: Evaluation – Thin Variant
	Slide 29: Evaluation – Wide Variant
	Slide 30: Evaluation – Wide Variant
	Slide 31: Outline
	Slide 32: Future Work
	Slide 33: Questions – Buffer Management
	Slide 34: Discussion
	Slide 35: Before Next Lecture

