WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 7: Parallel Database

Xiangyao Yu
9/25/2025

Today’s Paper: Parallel DBMSs

Parallel Database Systems:
The Future of High Performance Database Processing!

David J. DeWitt? Jim Gray
Computer Sciences Department San Francisco Systems Center
University of Wisconsin Digital Equipment Corporation
1210 W. Dayton St. 455 Market St. 7th floor
Madison, WI. 53706 San Francisco, CA. 94105-2403
dewitt @ cs.wisc.edu Gray @ SFbay.enet.dec.com

January 1992
Abstract: Parallel database machine architectures have evolved from the use of exotic
hardware to a software parallel dataflow architecture based on conventional shared-nothing
hardware. These new designs provide impressive speedup and scaleup when processing
relational database queries. This paper reviews the techniques used by such systems, and surveys
current commercial and research systems.

1. Introduction

Highly parallel database systems are beginning to displace traditional mainframe
computers for the largest database and transaction processing tasks. The success of these
systems refutes a 1983 paper predicting the demise of database machines [BORAS3]. Ten years
ago the future of highly-parallel database machines seemed gloomy, even to their staunchest
advocates. Most database machine research had focused on specialized, often trendy, hardware
such as CCD memories, bubble memories, head-per-track disks, and optical disks. None of these
technologies fulfilled their promises; so there was a sense that conventional cpus, electronic
RAM, and moving-head magnetic disks would dominate the scene for many years to come. At
that time, disk throughput was predicted to double while processor speeds were predicted to
increase by much larger factors. Consequently, critics predicted that multi-processor systems
would soon be 1/0 limited unless a solution to the /O bottleneck were found.

While these predictions were fairly accurate about the future of hardware, the critics were
certainly wrong about the overall future of parallel database systems. Over the last decade
Teradata, Tandem, and a host of startup companies have successfully developed and marketed
highly parallel database machines.

Communications of the ACM, 1992

Agenda

Parallelism metrics

Parallel architecture

Parallel OLAP operators

Cloud parallel database

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators

Cloud parallel database

Parallel Database History

1980’'s: database machines
» Specialized hardware to make databases run fast
« Special hardware cannot catch up with Moore’s Law

1980's — 2010’s: shared-nothing architecture

» Connecting machines using a network
2010’s — future?

Scaling in Parallel Systems

Linear speedup

« Twice as much hardware can perform the task in half the elapsed time
small system elapsed time

* Speedup =

big system elapsed time
 Linear speedup = N, where the big system is N times larger than the small system

Scaling in Parallel Systems

Linear speedup

« Twice as much hardware can perform the task in half the elapsed time
small system elapsed time

* Speedup =

big system elapsed time
 Linear speedup = N, where the big system is N times larger than the small system

Linear scaleup
« Twice as much hardware can perform twice as large a task in the same elapsed
time
small system elapsed time on small problem

big system elapsed time on big problem
» Linear scaleup = 1

e Scaleup =

Scaling in Parallel Systems

The Good Speedup

NewTime

_ OldTime

Speedup

Processors & Discs

Ideal speedup

Scaling in Parallel Systems

A Bad Speedup Curve

The Good Speedup No Parallelism

NewTime
OldTime
NewTime

_ OldTime

Linearity

Speedup
Speedup

Processors & Discs Processors & Discs

Ideal speedup No speedup

Scaling in Parallel Systems

A Bad Speedup Curve
3-Factors

o The Good Speedup ° A Bad Speedup Curve
E.E o No Parallelism
= =[5
— @ @
oz Ol

o) .y
3 S Linearity
o &
a Q.
N 0 :
Processors & Discs Processors & Discs
Ideal speedup No speedup

Processors & Discs

In practice

10

Threats to Parallelism

non-ideal

processors & disks

Startup

Start parallel tasks

Collect results

Starting remote tasks incurs
performance overhead

11

Threats to Parallelism

non-ideal

processors & disks

Startup Interference Examples of interference

 Shared hardware resources
(e.g., memory, disk, network)

» Synchronization (e.g., locking)

12

Threats to Parallelism

Tasks:

non-ideal

processors & disks

Startup Interference Skew Some nodes take more time to

execute the assigned tasks, e.g.,
* More tasks assigned
 More computational

Intensive tasks assigned
* Node has slower hardware

13

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators

Cloud parallel database

14

Design Spectrum

RAM RAM RAM RAM RAM RAM

T T T
@@@
S S

Shared Memory Shared Disk Shared Nothing

15

Design Spectrum — Shared Memory (SM)

All processors share direct access to a
common global memory and to all disks
* Does not scale beyond a single server

Example: multicore processors

CPU O

Memory module

Core 0

Core 1 Core 2

CPU 1

Memory module

Core 1 Core 2

Core 3

Shared cache

Shared cache

Core 0

Core 1 Core 2

Core 1 H Core 2

Shared cache

Memory module

CPU 2

Shared cache

Memory module

CPU3

Shared Memory

16

Design Spectrum — Shared Disk (SD)
Each processor has a private memory but has

direct access to all disks
* Does not scale beyond tens of servers

RAM RAM RAM

Example: Network attached storage (NAS) and SIS
storage area network (SAN) Shared Disk

17

Design Spectrum — Shared Nothing (SN)

Each memory and disk is owned by some ChU cPU
processor that acts as a server for that data

« Scales to thousands of servers and beyond

RAM RAM RAM

T T T
S S S

Important optimization goal: minimize network

data transfer
Shared Nothing

18

Agenda

Parallelism metrics
Parallel architecture
Parallel OLAP operators

Cloud parallel database

19

How to Build Parallel Database®”?

Old uni-processor software must be rewritten to benefit from parallelism

Most database programs are written in relational language SQL
 Can make SQL work on parallel hardware without rewriting
« Benefits of a high-level programming interface

20

How to Build Parallel Database®”?

Old uni-processor software must be rewritten to benefit from parallelism

Most database programs are written in relational language SQL
 Can make SQL work on parallel hardware without rewriting
« Benefits of a high-level programming interface

--:—-
Source Source Source Source
Data Data Data Data

Pipelined Parallelism Partitioned Parallelism .

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Processor 1

Processor 2

22

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Advantages
» Avoid writing intermediate results back to disk

Processor 1

Processor 2

23

Pipelined Parallelism

Pipelined parallelism: pipeline of operators

Advantages
» Avoid writing intermediate results back to disk

Disadvantages
« Small number of stages in a query
* Blocking operators: e.g., sort and aggregation

* Different speed: scan faster than join. Slowest
operator becomes the bottleneck

Processor 1

Processor 2

24

Partitioned Parallelism

Round robin

Map tuple i to disk (i mode n)
« Advantage: Simplicity, good load balancing
- Disadvantage: Hard to identify the partition of a particular record

25

Partitioned Parallelism

Round robin Range Partitioning

Map contiguous attribute ranges to partitions
« Advantage: Good locality due to clustering
* Disadvantage: May suffer from skewness

26

Partitioned Parallelism

Round robin Range Partitioning

Map based on the hash value of tuple attributes
- Advantage: Good load balance, low skewness
- Disadvantage: Bad locality

Hash Partitioning

27

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified
« Each operator has a set of input and output ports

 Partition and merge these ports to sequential ports so that an operator is
not aware of parallelism

Process
Executing
Operator

Split
operator

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified
« Each operator has a set of input and output ports

 Partition and merge these ports to sequential ports so that an operator is
not aware of parallelism

C

> C - =__ merge
— operator
Process Split — 1 @ W
Executing operator h,
Operator @
— e A
1A All

29

Parallelism within Relational Operators

Parallel data streams so that sequential operator code is not modified

« Each operator has a set of input and output ports
 Partition and merge these ports to sequential ports so that an operator is

not aware of parallelism

C
1

insert into C @
select *
A, B
A

from

where .X = B.y;

split each join output into 3 streams
erge the 3 join input streams
at each insert node

split each B scan output into 3 streams
merge the 3 input streams
at each join node

30

Data Shuffle

Single-node query plan

)

Distributed query plan

X
Exchange Exchange
| |

R S

31

Data Shuffle — Example

Site 1

R LS |

Site 2

Query plan

X
Exchange Exchange
| |

R S

32

Data Shuffle — Single-Site

Site 1

Solution 1: send all the involved

Query plan tables to a single site
4 * Advantage: Single-site query
/ \ execution is a solved problem

* Disadvantage: (1) Single site
Exchange Exchange execution can be slow (2) Data
| | may not fit in single site’s
R S memory or disk

33

Data Shuffle — Broadcast

Site 1

‘ S; ‘ Query plan

Site 2 /// \\\

Exchange

|
‘SE‘ S

Solution 2: Keep one relation
partitioned and broadcast the
other relation to all sites

- Advantage: One relation does
not need to move

* Disadvantage: Still need to
broadcast the other relation to all
sites

34

Data Shuffle — Co-partition

Site 1
Solution 3: Partition both
Ry ‘ S1 ‘ Query plan relations using the join key
] i X4 * Advantage: Each site has less
| / \ data to process
| [Site 2 || - Disadvantage: Both relations are
Exc'?ange Exclhange shuffled (if not already partitioned
‘ S, II R 3 based on join key)
Site 3 |

Specialized Parallel Operators

Semi-join
* Example:

SELECT *

FROM T1, T2
WHERE T1.A

T2

.C

Site 1 Site 2
BlA|B

1[4 | hiralR))

2[5 |—— [0111000] _ 5"2 IEv'a ? hfli?) 2

3|6 -]

3 |7 hAvl=vmod 7 ~ |2| 7l | 2] 2 J
4| 8 4| 4 | =
5|9 5| 5 | -
gl1 gl 1 | v

S|C|D
s|\c|lD e
217
217
1

Q= HH‘A=GSF

2
I
th &
e =0y
D

* Source: Sattler KU. (2009) Semijoin. Encyclopedia of Database Systems.

36

Agenda

Para

Para

Para

e

e

e

Ism metrics
architecture

OLAP operators

Cloud parallel database

37

Databases Moving to the Cloud

T e

On-premises database Cloud database
* Fixed capacity On-demand scalability
« Scaling takes months/years « Scaling takes seconds/minutes

Traditional architectures fail to leverage cloud elasticity

Storage Disaggregation Architecture

Why disaggregate? Compute and storage behave differently

Compute Layer - Stateless — easy to scale
« Expensive — VMs cost $0.1-10/hour
- Bursty — demand changes rapidly

Network

Storage Layer - Stateful — difficult to scale

* Low-cost — S3 costs $0.02/GB/month

SsSeceeeesS » Steady — demand changes slowly
39

Storage Disaggregation Architecture

Why disaggregate? Compute and storage behave differently

Compute Layer

Amazon ., Spark’ SQL
u ORACLE 3 . ﬂ
00”93"5 CLSSE“SBQRS\ECE >OLARDB ¥ INONFO Ve

o s VERTICA

resto -
Network GaussDB 7 SQLServer il [
< .35"32':.29
Storage Layer v - ' y
JUUDUUE conse 5 £riNO
SICICOICOICIOIC

— e o = =

40

Storage Disaggregation vs. Shared Nothing?

Shared Nothing Storage disaggregation

Compute Layer

== = =

Network Network

Storage Layer

Storage disaggregation = A cluster of o (o = =

R T N e

41

Storage Disaggregation vs. Shared Disk?

Shared Disk Storage disaggregation

Compute Layer

= =) =

Network Network

Storage service offers: built-in HA,

S eeeeeeESE™=>

R T N e

horizontal scaling, advanced APIs, etc. EEETET==

42

Generalized Disaggregation

c , Beyond compute-storage: disaggregation
ompute of more services for (1) independent
scaling and (2) resource pooling
Storage
& \ —
Compute Compute Compute Compute
Logging Pushdown Ephemeral storage Memory
fagejcacne Storage Storage Storage
Page store
E.g., Socrates E.g., Redshift spectrum, E.g., Snowflake E.g., PolarDB

S3 select, pushdownDB

43

Network Bottleneck with Disaggregation

RAM RAM RAM RAM RAM RAM RAM RAM RAM

e % @ @ o Mo

_— =

N == =/

Storage-as- S
S S e = S

Storage Disaggregation Shared Nothing Shared Disk

Key challenge: Network becomes a bottleneck
— Performance of disaggregation can be 10x lower than shared-nothing [1]

[1] Junjay Tan, et al. Choosing A Cloud DBMS: Architectures and Tradeoffs, VLDB’19

44

Disaggregation: A New Architecture for

Cloud Databases

Disaggregation opens a vast, underexplored design
space. Now is the time to rethink old assumptions an
build new foundations for cloud databases

Xiangyao Yu

xXy(@cs.wisc.edu

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Disaggregation: A New Architecture for Cloud Databases

Xiangyao Yu
University of Wisconsin-Madison
yxy@cs.wisc.edu

ABSTRACT

Disaggregation—the separation of database components into inde-
pendently managed and scalable services—has emerged as a foun-
dational architecture for cloud-native databases. It enables key
benefits such as elasticity, resource pooling, and cost efficiency.
This paper offers a perspective on the disaggregation trend, tracing
its evolution, and presents a set of research efforts that redesign
and optimize distributed databases in this new architecture. Finally,
the paper outlines future directions and open challenges, highlight-
ing disaggregation as a rich and still largely unexplored area for
database research.

PVLDB Reference Format:

Xiangyao Yu. Disaggregation: A New Architecture for Cloud Databases.
PVLDB, 18(12): 5527 - 5530, 2025

doiz10.14778/3750601.3760520

1 INTRODUCTION

Databases are transitioning from on-premises deployments to the
cloud. Modern cloud databases adopt a disaggregation architec-
ture where different system components, such as computation and
storage layers, are managed as physically separated services. Dis-
aggregation enables independent scaling and billing of resources,
as well as resource pooling, which significantly improves cost effi-
v and elasticity of cloud databases.

a shift that
departs from traditional assumptions in database systems. It ex-
tends distributed databases from a single tightly coupled cluster
to multiple loosely coupled clusters, each responsible for a subset
of database functions. This shift opens a vast new design space:
rethinking classic database protocols, redistributing traditional data-
base functions across disaggregated components, introducing new
disaggregated components to enable novel features, and beyond.
Opti for the d il chitecture have been ex-
plored in both research and production systems in recent years, but
many challenges and research oppertunities remain, especially as
cloud platforms and cloud databases continue to evolve.

This paper aims to offer a perspective on how disaggregation is
reshaping the database landscape today and potential directions for
the future. The paper begins by briefly describing the key charac-
teristics of the disaggregation architecture and its evolution, from
storage di to more general di (Section 2).
It then highlights several research projects from our lab that intro-
duce new techniques to optimize for the architecture (Section 3).

“This work is lie nmons BY-NC-ND 4.0 International

isi https:/creativecomumons orglicenses/by-nc- nd/4.0/ to view a copy of
this license. For any use beyond thase covered by this license, abtain permission by

emailing info@vldb.org, Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowiment,

Proceedings of the VLDB Endowment, Vol 15, No, 12 ISSN 2150-5097.

doi:10. 14778/3750601 3760520

wsed under the Cre

Finally, the paper discusses several future directions from the au-
thor's perspective (Section 4), followed by a conclusion (Section 5).

2 THE EVOLUTION OF DISAGGREGATION
ARCHITECTURE

A key advantage of the cloud over on-premises systems is on-
demand scalability—the capability for users to dynamically allocate
and release resources and pay only for what they use. Classic data-
base architectures, such as shared-nothing, struggle to fully exploit
this feature. As a result, cloud-native databases have begun to adopt
anew disaggregation architecture.

2.1 Storage disaggregation

Early cloud-native databases, such as Snowflake [9, 22] and Au-
20, 21], adopt a storage-disaggregation architecture, where
compute and storage clusters are physically separated. The two clus-
ters can scale independently and often use different cluster sizes
and machine types.

The disaggregation of storage and compute is driven by the fun-
damental mismatches between these twa services: (1) Compute is
significantly more expensive than storage in modern cloud en
ronments. (2) Compute demands fluctuate more drastically while
storage demands change slowly. (3) Compute can often be stateless
and thus easier to scale in contrast to the inherently stateful storage
service. By decoupling these two services, the expensive compute
layer can quickly scale up/down and out/in to accommodate work-
load changes, while the cheaper storage service can stay relatively
stable with less frequent reconfigurations

Storage disaggregation resembles the traditional an-premises
shared-disk architecture in that both physically separate the com-
pute and storage components. However, cloud storage services
offer richer capabilities, such as built-in high availability, multi
region durability, built-in horizontal scalability, and advanced APls.
‘These capabilities enable new use cases beyond what traditional
shared-disk systems could support. Moreover, the principle of dis-
aggregation can be generalized beyond compute and storage, as
discussed in the next subsection

2.2 Generalized Disaggregation

1 q "

can alsa

Besides enabling scalability, disagg
improve the modularity of complex systems and facilitate shar-
ing and pooling of resources, leading to higher efficiency. Driven
by these salient features, modern cloud databases are being disag-
gregated into even more components, beyond just compute and
storage. The list below shows several examples but is by no means
exhaustive

Further Disaggregated Storage.: Socrates [3] adopts a design
similar to Aurora but further disaggregates the storage layer into
(1) a logging service, (2) a page cache, and (3) a durable page store.

45

http://yxy@cs.wisc.edu

Q/A — Parallel Database

* Why shared-nothing succeed and shared-memory/disk failed?
* Main obstacles to parallel query execution optimization?
* How are split-operator routing decisions implemented at runtime?

* Which production systems deployed dynamic repartitioning?

46

Before Next Lecture

Submit review for

Bobbi Yogatama, et al., Rethinking Analytical Processing in the GPU

Era. arXiv 2025

47

https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/sirius.pdf
https://pages.cs.wisc.edu/~yxy/cs764-f25/papers/sirius.pdf

	Slide 1
	Slide 2: Today’s Paper: Parallel DBMSs
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Parallel Database History
	Slide 6: Scaling in Parallel Systems
	Slide 7: Scaling in Parallel Systems
	Slide 8: Scaling in Parallel Systems
	Slide 9: Scaling in Parallel Systems
	Slide 10: Scaling in Parallel Systems
	Slide 11: Threats to Parallelism
	Slide 12: Threats to Parallelism
	Slide 13: Threats to Parallelism
	Slide 14: Agenda
	Slide 15: Design Spectrum
	Slide 16: Design Spectrum – Shared Memory (SM)
	Slide 17: Design Spectrum – Shared Disk (SD)
	Slide 18: Design Spectrum – Shared Nothing (SN)
	Slide 19: Agenda
	Slide 20: How to Build Parallel Database?
	Slide 21: How to Build Parallel Database?
	Slide 22: Pipelined Parallelism
	Slide 23: Pipelined Parallelism
	Slide 24: Pipelined Parallelism
	Slide 25: Partitioned Parallelism
	Slide 26: Partitioned Parallelism
	Slide 27: Partitioned Parallelism
	Slide 28: Parallelism within Relational Operators
	Slide 29: Parallelism within Relational Operators
	Slide 30: Parallelism within Relational Operators
	Slide 31: Data Shuffle
	Slide 32: Data Shuffle – Example
	Slide 33: Data Shuffle – Single-Site
	Slide 34: Data Shuffle – Broadcast
	Slide 35: Data Shuffle – Co-partition
	Slide 36: Specialized Parallel Operators
	Slide 37: Agenda
	Slide 38: Databases Moving to the Cloud
	Slide 39: Storage Disaggregation Architecture
	Slide 40: Storage Disaggregation Architecture
	Slide 41: Storage Disaggregation vs. Shared Nothing?
	Slide 42: Storage Disaggregation vs. Shared Disk?
	Slide 43: Generalized Disaggregation
	Slide 44: Network Bottleneck with Disaggregation
	Slide 45: Disaggregation: A New Architecture for Cloud Databases
	Slide 46: Q/A – Parallel Database
	Slide 47: Before Next Lecture

