SQLite: Past, Present,
and Future

Tanisha Hegde

Structure

L

 Overview
e Architecture of SQLite

e Evaluation and Optimizations
e SQLite with OLTP
e SQLite with OLAP
e SQLite and Blob I/0O

* Conclusion

Overview

e SQLite is a popular embedded relational database management system |I

(RDBMS).

* Is Lightweight and has a widespread use in various applications, including
mobile devices, browsers, and desktop software.

e SQLite is primarily designed for fast online transaction processing (OLTP),
employing row-oriented execution and a B-tree storage format.

* With the rise of data science and need to store data in CSV and JSON formats
embeddable database engines are equipped making SQLite already popular

(Kaggle) .

Architecture

* SQL Compiler — Tokenizer, parser and
code generator

* Output: bytecode

* Core — Execution engine structured
as a virtual machine

e Backend — B tree module. DB file is a
collection of B trees

e Accessories — suite for tests and
memory allocation, string utils and
random number generators

Core

Backend

SQL Compiler

Accessories

Fvaluation of Workloads
and Optimizations

II SQLite for OLTP workloads

e TATP benchmark
* 80% read only and 20% Updates, Inserts and Deletes

* Evaluate on DELETE, TRUNCATE and WAL journal mode.
 TATP is not an ideal workload for DuckDB.

* DuckDB is optimized for bulk updates, like adding a column to
a table, appending a large batch of rows, rather than fine-
grained operations present in OLTP workloads.

* QObservation

e SQLite-WAL reaches a throughput of 10 thousand TPS, which is
10X faster than DuckDB .

* On the Raspberry Pi, the performance gap is smaller yet still
significant

10"

w

10
10

-

10

mmm SQLite-WAL mmm SQLite-DELETE = DuckDB

262 362
8e1

100 K
Subscriber Records

(b) Raspberry Pi

— SQthe WAL — SQthe DELETE = DuckDB

II III II =

100K
Subscriber Records

(a) Cloud server

SQLite with OLAP workloads

e SSB benchmark

* Hasa |arge faCt table and Sma”er = SQlite mss DuckDB
dimension tables.

e SSB queries involve joins between the fact II Il Il 0 Il II II [Il Il I II O
table and the dimension tables With filters Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q23 31 Q3.2 Q3.3 Q3.4 4.1 Q4.2
on dimension table attribute

2ed

Latency (ms)

(a) Cloud server

m— SQLite m== DuckDB

ge 4e3 4e3 4e3 Ges 4e3 4e3
= 6e2 6e2 .

1ed

o
S

e QObservation:

w

Latency (ms)
3

* Widest performance margin is on query I I I I
flight 2, for which DuckDB is 30-50X faster. + Hill il HN|EN N EN

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
. . . . Que
 SQLite’s fastest queries are in flight 1, .

whereas DuckDB’s fastest queries are in
flight 3.

Figure 3: SSB latency (logarithmic scale, lower is better).

Optimization

Profiling to reason on observations

* SeekRowid instruction searches a B-tree index for a

row with a given row ID.
1e10

* The Column instruction extracts a column from a mmm SeekRowid mmm SorterSort =mm Eq msm Other
given record s Column mm Ne = Next

BN

Key optimization targets

CPU cycles
w

e Avoiding unnecessary B-tree probes — Detailed

N

e Streamlining value extraction - Discarded

* sacrifice the stability and portability of the database 0
file format for the added performance.

Observation SSB Performance Profile
e Large CPU cycles for flight 2 by SeekRowid

Avoiding unnecessary B-tree probes

An example:
* Inner Tables: date, part, supplier
e Quter Table: Line order

Costly to probe the primary key of Part table as it
is the largest

Only 0.8% of the lineorder tuples satisfy the
restrictions on p_category and s_region

A large portion of B-tree probes are excluded from
the result.

Solution: Bloom filters

SELECT SUM(lo_revenue), d_year, p_brandl
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND 1lo_suppkey = s_suppkey

AND p_category 'MFGR#12'

AND s_region = 'AMERICA'
GROUP BY d_year, p_brandl
ORDER BY d_year, p_brandl;

(a) SQL

[QUERY PLAN |

HSCAN lineorder |

{SEARCH part USING INTEGER PRIMARY KEY (rowid=?)]
{SEARCH date USING INTEGER PRIMARY KEY (rowid=?)]
HSEARCH supplier USING INTEGER PRIMARY KEY (rowid=?)]
HUSE TEMP B-TREE FOR GROUP BY |

(b) Query plan pre-optimization

II Avoiding unnecessary B-
tree probes

* Bloom Filters
* Implement Lookahead Information Passing(LIP)

* Create Bloom filters on all the inner
(dimension) tables before the join processing
starts.

* Pass the Bloom filters to the first join
operation.

* Probe the Bloom filters before carrying out the
rest of the join.
* Result
e SQLite is now 4.2X faster on SSB.

Latency (ms)

Latency (ms)

oS,

|
. III ||l ||l Ill III III III Il- Il- Il- III Ill

mm SQLite = SQLite-LIP s DuckDB

3.2

Q3.3

(a) Cloud se;

QLite mmm SQLite-LIP == DuckDB

1.1 Q1.2 Q1.3 2.1 Q2.2 Q23 Q31 Q3.2 Q33 4.1 Q4.2

(b) Raspberry Pi

1e10

mmm SeekRowid mmm SorterSort == Eq Filter
s Column mmm Ne mmm Next s Other

CPU cycles

o

2
2
o
R
(3]

(b) Post-optimization

} sQLite and Blob 1/0

Blob Benchmark

* simulates an application that uses a database engine to manage
raw blob data

e Atableis created in the database with a single row and a single
column of blob data with a given size.

* repeatedly either read or write the entire blob, based on
specified probabilities.

Observation

e 100 KB blobs - SQLite-WAL produces the highest throughput of
the transactional methods.

e SQLite-WAL even has a slight edge over the filesystem for small
blobs.

* Due to SQLite’s ability to serve read requests from its cache,
whereas the filesystem serves read requests with calls to fread.

* 10 MB blobs, DuckDB produces the highest throughput of the
transactional methods.

10000

8000

6000

4000

Throughput (TPS)

N
o
o
o

o

200

Throughput (TPS)
o o
& o o

o

mmm SQLite-WAL
mmm SQLite-DELETE
=
[]

DuckDB
Filesystem
2e3
982 183. 1e3 5 2 782 962

90% 50% 10%
Read percentage

(a) Cloud server, 100 KB blob

mmm SQLite-WAL
mmm SQLite-DELETE
W DuckDB
[

Filesystem
S5e1
2 1 2 1 el
e e
1e1 1et
——

10%

8e1 8e1

90% 50%
Read percentage

(b) Cloud server, 10 MB blob

Conclusion

L

* The widespread deployment of SQLite is likely a result of its cross platform

code and file format, compact and self-contained library, extensive testing,
and low overhead.

* |Is primarily designed for efficient OLTP.

* Bloom Filters have been integrated into SQLite and resulted in up to 4.2X
speedup on SSB.

Thoughts and Questions

