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Overview

e SQLite is a popular embedded relational database management system |I

(RDBMS).

* Is Lightweight and has a widespread use in various applications, including
mobile devices, browsers, and desktop software.

e SQLite is primarily designed for fast online transaction processing (OLTP),
employing row-oriented execution and a B-tree storage format.

* With the rise of data science and need to store data in CSV and JSON formats
embeddable database engines are equipped making SQLite already popular

(Kaggle) .



Architecture

* SQL Compiler — Tokenizer, parser and
code generator

* Output: bytecode

* Core — Execution engine structured
as a virtual machine

e Backend — B tree module. DB file is a
collection of B trees

e Accessories — suite for tests and
memory allocation, string utils and
random number generators
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Fvaluation of Workloads
and Optimizations




II SQLite for OLTP workloads

e TATP benchmark
* 80% read only and 20% Updates, Inserts and Deletes

* Evaluate on DELETE, TRUNCATE and WAL journal mode.
 TATP is not an ideal workload for DuckDB.

* DuckDB is optimized for bulk updates, like adding a column to
a table, appending a large batch of rows, rather than fine-
grained operations present in OLTP workloads.

* QObservation

e SQLite-WAL reaches a throughput of 10 thousand TPS, which is
10X faster than DuckDB .

* On the Raspberry Pi, the performance gap is smaller yet still
significant
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SQLite with OLAP workloads

e SSB benchmark

* Hasa |arge faCt table and Sma”er = SQlite  mss DuckDB
dimension tables.
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whereas DuckDB’s fastest queries are in
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Figure 3: SSB latency (logarithmic scale, lower is better).



Optimization

Profiling to reason on observations

* SeekRowid instruction searches a B-tree index for a

row with a given row ID.
1e10

* The Column instruction extracts a column from a mmm SeekRowid mmm SorterSort =mm Eq msm Other
given record s Column mm Ne = Next

BN

Key optimization targets

CPU cycles
w

e Avoiding unnecessary B-tree probes — Detailed

N

e Streamlining value extraction - Discarded

* sacrifice the stability and portability of the database 0
file format for the added performance.

Observation SSB Performance Profile
e Large CPU cycles for flight 2 by SeekRowid



Avoiding unnecessary B-tree probes

An example:
* Inner Tables: date, part, supplier
e Quter Table: Line order

Costly to probe the primary key of Part table as it
is the largest

Only 0.8% of the lineorder tuples satisfy the
restrictions on p_category and s_region

A large portion of B-tree probes are excluded from
the result.

Solution: Bloom filters

SELECT SUM(lo_revenue), d_year, p_brandl
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND 1lo_suppkey = s_suppkey

AND p_category 'MFGR#12'

AND s_region = 'AMERICA'
GROUP BY d_year, p_brandl
ORDER BY d_year, p_brandl;

(a) SQL

[QUERY PLAN |

HSCAN lineorder |

{SEARCH part USING INTEGER PRIMARY KEY (rowid=?)]
{SEARCH date USING INTEGER PRIMARY KEY (rowid=?)]
HSEARCH supplier USING INTEGER PRIMARY KEY (rowid=?)]
HUSE TEMP B-TREE FOR GROUP BY |

(b) Query plan pre-optimization



II Avoiding unnecessary B-
tree probes

* Bloom Filters
* Implement Lookahead Information Passing(LIP)

* Create Bloom filters on all the inner
(dimension) tables before the join processing
starts.

* Pass the Bloom filters to the first join
operation.

* Probe the Bloom filters before carrying out the
rest of the join.
* Result
e SQLite is now 4.2X faster on SSB.

Latency (ms)

Latency (ms)

oS,

|
. III ||l ||l Ill III III III Il- Il- Il- III Ill

mm SQLite = SQLite-LIP s DuckDB

3.2

Q3.3

(a) Cloud se;

QLite mmm  SQLite-LIP == DuckDB

1.1 Q1.2 Q1.3 2.1 Q2.2 Q23 Q31 Q3.2 Q33 4.1 Q4.2

(b) Raspberry Pi

1e10

mmm  SeekRowid mmm  SorterSort == Eq Filter
s Column mmm Ne mmm Next s Other

CPU cycles

o

2
2
o
R
(3]

(b) Post-optimization



} sQLite and Blob 1/0

Blob Benchmark

* simulates an application that uses a database engine to manage
raw blob data

e Atableis created in the database with a single row and a single
column of blob data with a given size.

* repeatedly either read or write the entire blob, based on
specified probabilities.

Observation

e 100 KB blobs - SQLite-WAL produces the highest throughput of
the transactional methods.

e SQLite-WAL even has a slight edge over the filesystem for small
blobs.

* Due to SQLite’s ability to serve read requests from its cache,
whereas the filesystem serves read requests with calls to fread.

* 10 MB blobs, DuckDB produces the highest throughput of the
transactional methods.
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Conclusion

L

* The widespread deployment of SQLite is likely a result of its cross platform

code and file format, compact and self-contained library, extensive testing,
and low overhead.

* |Is primarily designed for efficient OLTP.

* Bloom Filters have been integrated into SQLite and resulted in up to 4.2X
speedup on SSB.



Thoughts and Questions



