
SQLite: Past, Present, 
and Future

Tanisha Hegde



Structure

• Overview
• Architecture of SQLite
• Evaluation and Optimizations
• SQLite with OLTP
• SQLite with OLAP
• SQLite and Blob I/O

• Conclusion



Overview

• SQLite is a popular embedded relational database management system 
(RDBMS).
• Is Lightweight and has a widespread use in various applications, including 

mobile devices, browsers, and desktop software.
• SQLite is primarily designed for fast online transaction processing (OLTP), 

employing row-oriented execution and a B-tree storage format.
• With the rise of data science and need to store data in CSV and JSON formats 

embeddable database engines are equipped making SQLite already popular 
(Kaggle) .



Architecture

• SQL Compiler – Tokenizer, parser and 
code generator
• Output: bytecode

• Core – Execution engine structured 
as a virtual machine
• Backend – B tree module. DB file is a 

collection of B trees
• Accessories – suite for tests and 

memory allocation, string utils and 
random number generators



Evaluation of Workloads 
and Optimizations



SQLite for OLTP workloads

• TATP benchmark
• 80% read only and 20% Updates, Inserts and Deletes

• Evaluate on DELETE, TRUNCATE and WAL journal mode.

• TATP is not an ideal workload for DuckDB.

• DuckDB is optimized for bulk updates, like adding a column to 
a table, appending a large batch of rows, rather than fine-
grained operations present in OLTP workloads.

• Observation
• SQLite-WAL reaches a throughput of 10 thousand TPS, which is 

10X faster than DuckDB .
• On the Raspberry Pi, the performance gap is smaller yet still 

significant



SQLite with OLAP workloads

• SSB benchmark
• Has a large fact table and smaller 

dimension tables.

• SSB queries involve joins between the fact 
table and the dimension tables with filters 
on dimension table attribute

• Observation:
• Widest performance margin is on query 

flight 2, for which DuckDB is 30-50X faster.
• SQLite’s fastest queries are in flight 1, 

whereas DuckDB’s fastest queries are in 
flight 3.



Optimization

Profiling to reason on observations

• SeekRowid instruction searches a B-tree index for a 
row with a given row ID.

• The Column instruction extracts a column from a 
given record

Key optimization targets

• Avoiding unnecessary B-tree probes – Detailed

• Streamlining value extraction - Discarded
• sacrifice the stability and portability of the database 

file format for the added performance.

Observation

• Large CPU cycles for flight 2 by SeekRowid
SSB Performance Profile



Avoiding unnecessary B-tree probes

• An example:
• Inner Tables: date, part, supplier
• Outer Table: Line order

• Costly to probe the primary key of Part table as it 
is the largest

• Only 0.8% of the lineorder tuples satisfy the 
restrictions on p_category and s_region

• A large portion of B-tree probes are excluded from 
the result.

• Solution: Bloom filters



Avoiding unnecessary B-
tree probes

• Bloom Filters
• Implement Lookahead Information Passing(LIP)
• Create Bloom filters on all the inner 

(dimension) tables before the join processing 
starts.

• Pass the Bloom filters to the first join 
operation.

• Probe the Bloom filters before carrying out the 
rest of the join.

• Result
• SQLite is now 4.2X faster on SSB.



SQLite and Blob I/O

Blob Benchmark 
• simulates an application that uses a database engine to manage 

raw blob data
• A table is created in the database with a single row and a single 

column of blob data with a given size.
• repeatedly either read or write the entire blob, based on 

specified probabilities.

Observation
• 100 KB blobs - SQLite-WAL produces the highest throughput of 

the transactional methods. 
• SQLite-WAL even has a slight edge over the filesystem for small 

blobs. 
• Due to SQLite’s ability to serve read requests from its cache, 

whereas the filesystem serves read requests with calls to fread.
• 10 MB blobs, DuckDB produces the highest throughput of the 

transactional methods.



Conclusion

• The widespread deployment of SQLite is likely a result of its cross platform 
code and file format, compact and self-contained library, extensive testing, 
and low overhead.
• Is primarily designed for efficient OLTP.
• Bloom Filters have been integrated into SQLite and resulted in up to 4.2X 

speedup on SSB.



Thoughts and Questions


