
 DuckDB
 An Embeddable Analytical DB

In-Process Database Management System

● Embedded into other processes where the database
system is a linked library that runs completely within a
“host” process.

● Typically used in scenarios where an application needs to
store, retrieve, or manipulate data without the need for a
separate database server or process

● Common examples - SQLite, most widely deployed engine
for OLTP workloads

Need for an In-Process OLAP

● Interactive data analysis, where data is analysed and according
to insights decisions are take. Tool available such as R and
Python lack full-query optimization and transactional storage.

● Edge Computing in scenarios where data analysis needs to
happen closer to the source. Traditional data forwarding to
central locations can be inefficient due to bandwidth
constraints and privacy concerns.

What is expected out of an In-Process OLAP?

● High efficiency for OLAP workloads, but without sacrificing
OLTP performance.

● Efficient transfer of tables to and from the database, since
database and application run in the same process.

● An embedded database should not compromise the
stability of the host application.

● The database should be able to run in whatever
environment the host does.

DuckDB Components - Parser

DuckDB employs a SQL parser derived from Postgres. It takes SQL query
strings as input and returns a parse tree. The parse tree consists of statements
(e.g., SELECT, INSERT) and expressions (e.g., SUM(a)+1).

DuckDB Components - Logical Planner
● DuckDB’s logical planner includes two parts, the binder and the plan

generator.

● The binder resolves expressions referring to schema objects, such as tables
or views, with their column names and types.

● The plan generator transforms the parse tree into a tree of basic logical
query operators, like scan (table, view), filter (WHERE), project (columns)
and join.

● The binder resolves table references and enriches the parse tree with column
information, while the plan generator transforms the enriched parse tree into a
tree of logical query operators that describe how the query should be executed.

DuckDB Components - Optimizer

● DuckDB's optimizer performs join order optimization using
dynamic programming with a greedy fallback for complex join
graphs.

● It also performs flattening of arbitrary subqueries by resolving
nesting.

● It also rewrites rules to simplify the expression tree, by removing
redundant calculations/expressions. It also uses constant folding
which calculates constant expressions at compile-time.

DuckDB Components - Physical Planner

● The physical planner takes the optimized logical plan and
transforms it into the physical plan, selecting suitable
implementations where applicable.

● Decisions the physical planner takes -
○ Accessing data efficiently by deciding whether to scan the

whole table or use an existing index on that table.
○ Decide on join strategies to use based on the cost incurred, in

terms of I/O operations, CPU processing, memory usage.

DuckDB Components - Execution Engine

● DuckDB employs a vectorized interpreted execution engine. It
uses vectors to store the data efficiently.

● Some relevant features of vectors
○ Integers are stored in arrays.
○ Strings are managed through pointers to a separate string

storage.
○ To prevent unnecessary data reorganization, a selection vector

is used, specifying which parts of the data are relevant for the
current operation.

DuckDB Components - Vector Volcano Model

● This approach involves processing data in chunks or vectors of
values, rather than row by row.

● A chunk is a horizontal subset of a result set or query intermediate
or the base table. This node then recursively pulls chunks from
child nodes, eventually arriving at a scan operator reading from
persistent tables.

● The execution commences by pulling the first "chunk" of data
from the root node of the physical plan.

● This continues until the chunk arriving at the root is empty, at
which point the query is completed..

ACID Compliance

● Although DuckDB main focus is analytics, it ensures the integrity of the
data using Multi-Version Concurrency Control (MVCC).

● It uses an existing variant of MVCC for OLAP/OLTP systems (from HyPer
DB)

● This variant updates data in-place immediately, and keeps previous
states stored in a separate undo buffer for concurrent transactions and
aborts.

DataBlocks Storage

● DuckDB stores the data in-memory but for persistent storage, it
employs the read-optimized DataBlocks storage.

● This approach horizontally partitions logical tables into chunks of
columns, which are compressed again.

● Blocks also carry min/max indexes for every column, which enables
quick determination of their relevance to a query.

Performance - Teaser Scenario

● Suitable query is pre-configured to the benchmark systems for
SQLite, MonetDBLite, HyPer, and DuckDB. For small datasets all
systems perform similar.

● For larger datasets, all other databases performs bad than
DuckDB
○ SQLite suffers from its row-based execution model
○ MonetDBLite begins to suffer from excessive intermediate result

materialisation
○ HyPer is fast in processing queries but is not able to transfer result sets

as quickly as DuckDB does.

QUESTIONS?

