Starling: A Scalable Query Engine on
Cloud Functions

Motivation

System Does not Pay by Tunable

— require loading | query | performance
Amazon Athena v v X
* Modern Analytical workloads require certain Snowflake X v v
key features from Databases . Pre;tod ” \; ; ;

- - azon Redshift

* Does not require loading of data Teedslii:Spectram y X /
* Pay by query Google BigQuery v v X
* Tunable performance Azure SQL DW v X v
Starling v v v

* Existing Cloud native databases do not provide all

- - Table 1: C ison of cl Iytics dat
the features required by modern analytical workloads 2P 1: Comparison of cloud analytics databases

Why Cloud Functions?

* Canread directly from Cloud Storage
* Low startup time and billed on per-invocation basis
* Many functions can be invoked in parallel (tunable parallelism/performance)

Challenges with Cloud Functions?

Analytical gueries can run for hours, but cloud function execution is limited to a few minutes
* Cloud functions execute in resource constrained environments

Analytical queries require shuffling data, but cloud function do not allow communication
between function invocations

Design : Starling Architecture

|
_ Y
Source Code Upload\ Rl ——
/ % Base Tables *f.B(aCSf T:%%thta
oud Obje
¢ COOrdlnatOr _Quefy Plar—> —Parameterized) / | /\\" Execufion l \ Storagel) ‘J
_ _ o oton —Y Environment N Wite
* Cloud Function Service Coordireor— — s~ CoudFuion — 00019 > Intermedate
\ L &dnvocation Ohjecs /\/\
* Workers (Query Compilaton) Senice g
. kScheduing) ¢ Response — | | o
Storage «Query Response— n Invocaion —— / | :" Funct!on‘ /,s
Completion \ o ll ot E Read —, Commuicaon
/ . tomediales— Medum |
& | (Funcion € | |
\ Invocation) \\,\/

Read Query Result——

Figure 1: Query Execution in Starling, Opaque cloud components in blue, Starling components in yellow

Data Management in Starling

e Starling needs to work efficiently with raw data for competitive performance
* Base Tables and Intermediate State are both stored in Amazon S3
* Data shuffling requires all-to-all communication which has a high cost in S3

* One of the ways Starling mitigates this is by

* enabling producers to write a single partitioned file
* consumers read only the relevant partitions

Storage Latency Mitigation

* S3 has high aggregate throughput but much higher latency than other shuffling options
* Tasks perform several reads in parallel as opposed to performing blocking reads

* S3 does not guarantee read-after-write consistency

* Recently written objects to S3 by Producers may not be readily visible to Consumers

e Starling mitigates this risk by writing the same object to two different keysin S3

* Reduces the risk that a single visibility issue slows down all consumers

Query Execution : Relational Operator Implementation

* Operators implemented as a series of nested loops
* enables pipelining of operations

* BroadcastJoins:
* Inputtask for inner relation writes a single objectto S3
* Join tasks read inner relation and their subset of outer relation to perform join

* Partitioned Hash Joins:
* Inputtask writes partitioned file (partitioned on join key) to S3 for both relations
* Join tasks perform hash join on this partitioned data
* These joins would require shuffling

Query Execution : Shuffling

Standard shuffle requires all-to-all communication

For small joins, starling performs 2sr reads

For large joins, these many reads are unacceptable
Starling uses multistage shuffle by introducing combiners
This brings down the number of reads to 2(s/p + r/f)

Cost for additional writes by combiners is negligible

Producers

Partitioned

Objects 1238012580128

<

12388125881 238812388125

AV

Combiners

Combined 1203 1203

Objects -
<’
<>

Consumers

Figure 2: Starling multistage shuffle, function execu-
tions in blue, S3 Objects in shades of red showing par-
titions. Lines are reads and arrows are writes

Query Execution : Assigning Tasks and Pipelining

Assigning Tasks

* Trade-off between performance and cost
* Starling exposes this as user configured parameters

Pipelining

e Starling uses pipelining between stages to reduce query latency
* Consumer stages begin when a large fraction of producer inputs is available

Stragglers

* S3requests often suffer from poor tail latency

* Tasksin intermediate stages can Straggle

* Causes dependent tasks to stall

* To counter this, starling implements read and write straggler mitigation techniques

Stragglers : Read Straggler Mitigation

* Observe how long a request takes compared to its

expected completion time 1.0 mmm RSM off

* Expected query responsetime . r =1+ (b/tc) = RSM on

* If S3 fails to respond to a request within a fixed
factor of the expected time, Starling sends a .
duplicate request T 50 90 95 99

Time(s)

Read Latency Percentiles

* [taccepts whichever response returns first, and

99.9 99.99

closes the other connection Figure 3: Read latency percentiles for 256KB reads to
$3 from AWS Lambda. Comparing RSM off and on

Stragglers : Write Straggler Mitigation

In most cases, requests sent to S3 quickly, but
response from S3 may be delayed

Using a strategy similar to RSM, Starling may
react slowly to such cases

Additional model to predict response times for
writes once request has completed sending

Second write request is started on a new

connection if a straggler occurred as per these
models

20

B WSM off
B WSM Single Timer
| - WSM on

50 90 95 99 99.9
Write Latency Percentiles

Figure 4: Write latency percentiles for 100MB writes
to $3 from AWS Lambda. Comparing WSM off, with a
single timeout, and fully on

Evaluation : Experimental Setup

1,000 (1TB) TPC-H [16] dataset for most experiments, and scale factor 10,000
(10TB) for the scaling experiment
* Systems Compared against
 Amazon Redshift
 dc - dense compute
 ds - dense storage
e dk— Distribution key and ordering enabled
* dd - no distribution key and ordering
* Redshift with Spectrum
* Presto-4 with 4 workers
* Presto-16 with 16 workers
 Amazon Athena

Evaluation : Cost of Operation

]
1400 A
| Starling Presto-16 arling
1200 least least least
expensive expensive
1000 -
=
W 800 -
S
O
= 600 -
[
o
400 = presto-4
mmmmm presto-16
200 A s spectrum
mmmmm starling
0 T T T T T T T
0] 25 50 75 100 125 150 175

Average queries per hour

200

Figure 5: Daily cost with increasing queries of Starling
and configurations with data stored in S3

e Starling is the least expensive system of all configurations when query volumes are moderate

Evaluation : Query Latency

]

- Bl redshift-dc-dk
>~2' mEE redshift-dc-dd
£ S 40 wa redshift-ds-dk
E % redshift-ds-dd
=5 B presto-16
S @ 20 . _ —

S E spectrum
o9 athena
© o- m starling

All queries Athena Runnable
Queries

Figure 6: Geometric mean of latency on 1TB dataset

* Forrepeated workloads that are cost insensitive, a provisioned system with pre-loaded
local data and tuned schema is still the best choice

* But for ad-hoc analytics, Starling has the lowest query latency

Evaluation : Scalability

redshift-dc-dd
redshift-ds-dk
redshift-ds-dd
presto-16
spectrum
athena
starling

D

o

o
1

i
B L

All queries Athena Runnable
Queries

Query Latency
Geometric Mean (s)
N
o
o

o
1

Figure 7: Geometric mean of latency on 10TB dataset

* Starling scales on a query-by-query basis and thus is able to be more flexible to changes in input
data size as compared to other provisioned systems

Evaluation : Pay-per-query Services

* Athena provides a similar model and is cost per query competitive with Starling

* However, it is not suitable for ad-hoc query workloads
* Many queries do not run
* The ones which do run have higher latency
* Doesn't scale well for larger datasets

@WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

	Slide 1: Starling: A Scalable Query Engine on Cloud Functions
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

