Starling: A Scalable Query Engine on Cloud Functions
Motivation

• Modern Analytical workloads require certain key features from Databases
 • Does not require loading of data
 • Pay by query
 • Tunable performance
• Existing Cloud native databases do not provide all the features required by modern analytical workloads

<table>
<thead>
<tr>
<th>System</th>
<th>Does not require loading</th>
<th>Pay by query</th>
<th>Tunable performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Athena</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Snowflake</td>
<td>x</td>
<td>✓*</td>
<td>✓</td>
</tr>
<tr>
<td>Presto</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Amazon Redshift</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Redshift Spectrum</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Google BigQuery</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Azure SQL DW</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Starling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Comparison of cloud analytics databases
Why Cloud Functions?

- Can read directly from Cloud Storage
- Low startup time and billed on per-invocation basis
- Many functions can be invoked in parallel (tunable parallelism/performance)
Challenges with Cloud Functions?

- Analytical queries can run for hours, but cloud function execution is limited to a few minutes.
- Cloud functions execute in resource constrained environments.
- Analytical queries require shuffling data, but cloud functions do not allow communication between function invocations.
Design: Starling Architecture

- Coordinator
- Cloud Function Service
- Workers
- Storage

Figure 1: Query Execution in Starling. Opaque cloud components in blue, Starling components in yellow
Data Management in Starling

• Starling needs to work efficiently with raw data for competitive performance
• Base Tables and Intermediate State are both stored in Amazon S3
• Data shuffling requires all-to-all communication which has a high cost in S3
• One of the ways Starling mitigates this is by
 • enabling producers to write a single partitioned file
 • consumers read only the relevant partitions
Storage Latency Mitigation

- S3 has high aggregate throughput but much higher latency than other shuffling options
- Tasks perform several reads in parallel as opposed to performing blocking reads
- S3 does not guarantee read-after-write consistency
- Recently written objects to S3 by Producers may not be readily visible to Consumers
- Starling mitigates this risk by writing the same object to two different keys in S3
- Reduces the risk that a single visibility issue slows down all consumers
Query Execution: Relational Operator Implementation

- Operators implemented as a series of nested loops
 - enables pipelining of operations

- **Broadcast Joins:**
 - Input task for inner relation writes a single object to S3
 - Join tasks read inner relation and their subset of outer relation to perform join

- **Partitioned Hash Joins:**
 - Input task writes partitioned file (partitioned on join key) to S3 for both relations
 - Join tasks perform hash join on this partitioned data
 - These joins would require shuffling
Query Execution : Shuffling

- Standard shuffle requires all-to-all communication
- For small joins, starling performs 2sr reads
- For large joins, these many reads are unacceptable
- Starling uses multistage shuffle by introducing combiners
- This brings down the number of reads to $2(s/p + r/f)$
- Cost for additional writes by combiners is negligible

Figure 2: Starling multistage shuffle, function executions in blue, S3 Objects in shades of red showing partitions. Lines are reads and arrows are writes
Query Execution: Assigning Tasks and Pipelining

Assigning Tasks

- Trade-off between performance and cost
- Starling exposes this as user configured parameters

Pipelining

- Starling uses pipelining between stages to reduce query latency
- Consumer stages begin when a large fraction of producer inputs is available
Stragglers

- S3 requests often suffer from poor tail latency
- Tasks in intermediate stages can Straggle
- Causes dependent tasks to stall
- To counter this, starling implements read and write straggler mitigation techniques
Stragglers : Read Straggler Mitigation

- Observe how long a request takes compared to its expected completion time
- Expected query response time: \[r = l + \frac{b}{t_c} \]
- If S3 fails to respond to a request within a fixed factor of the expected time, Starling sends a duplicate request
- It accepts whichever response returns first, and closes the other connection

Figure 3: Read latency percentiles for 256KB reads to S3 from AWS Lambda. Comparing RSM off and on
Stragglers: Write Straggler Mitigation

- In most cases, requests sent to S3 quickly, but response from S3 may be delayed
- Using a strategy similar to RSM, Starling may react slowly to such cases
- Additional model to predict response times for writes once request has completed sending
- Second write request is started on a new connection if a straggler occurred as per these models

Figure 4: Write latency percentiles for 100MB writes to S3 from AWS Lambda. Comparing WSM off, with a single timeout, and fully on
Evaluation: Experimental Setup

- 1,000 (1TB) TPC-H [16] dataset for most experiments, and scale factor 10,000 (10TB) for the scaling experiment

- Systems Compared against
 - Amazon Redshift
 - dc – dense compute
 - ds – dense storage
 - dk – Distribution key and ordering enabled
 - dd – no distribution key and ordering
 - Redshift with Spectrum
 - Presto-4 with 4 workers
 - Presto-16 with 16 workers
 - Amazon Athena
Evaluation: Cost of Operation

- Starling is the least expensive system of all configurations when query volumes are moderate.

Figure 5: Daily cost with increasing queries of Starling and configurations with data stored in S3
Evaluation : Query Latency

For repeated workloads that are cost insensitive, a provisioned system with pre-loaded local data and tuned schema is still the best choice.

But for ad-hoc analytics, Starling has the lowest query latency.

Figure 6: Geometric mean of latency on 1TB dataset
Evaluation: Scalability

- Starling scales on a query-by-query basis and thus is able to be more flexible to changes in input data size as compared to other provisioned systems.

Figure 7: Geometric mean of latency on 10TB dataset
Evaluation: Pay-per-query Services

- Athena provides a similar model and is cost per query competitive with Starling
- However, it is not suitable for ad-hoc query workloads
 - Many queries do not run
 - The ones which do run have higher latency
 - Doesn't scale well for larger datasets