
Starling: A Scalable Query Engine on

Cloud Functions

Motivation

• Modern Analytical workloads require certain
key features from Databases

• Does not require loading of data

• Pay by query

• Tunable performance

• Existing Cloud native databases do not provide all
the features required by modern analytical workloads

Why Cloud Functions?

• Can read directly from Cloud Storage

• Low startup time and billed on per-invocation basis

• Many functions can be invoked in parallel (tunable parallelism/performance)

Challenges with Cloud Functions?

• Analytical queries can run for hours, but cloud function execution is limited to a few minutes

• Cloud functions execute in resource constrained environments

• Analytical queries require shuffling data, but cloud function do not allow communication
between function invocations

Design : Starling Architecture

• Coordinator

• Cloud Function Service

• Workers

• Storage

Data Management in Starling

• Starling needs to work efficiently with raw data for competitive performance

• Base Tables and Intermediate State are both stored in Amazon S3

• Data shuffling requires all-to-all communication which has a high cost in S3

• One of the ways Starling mitigates this is by

• enabling producers to write a single partitioned file

• consumers read only the relevant partitions

Storage Latency Mitigation

• S3 has high aggregate throughput but much higher latency than other shuffling options

• Tasks perform several reads in parallel as opposed to performing blocking reads

• S3 does not guarantee read-after-write consistency

• Recently written objects to S3 by Producers may not be readily visible to Consumers

• Starling mitigates this risk by writing the same object to two different keys in S3

• Reduces the risk that a single visibility issue slows down all consumers

Query Execution : Relational Operator Implementation

• Operators implemented as a series of nested loops

• enables pipelining of operations

• Broadcast Joins :

• Input task for inner relation writes a single object to S3

• Join tasks read inner relation and their subset of outer relation to perform join

• Partitioned Hash Joins :

• Input task writes partitioned file (partitioned on join key) to S3 for both relations

• Join tasks perform hash join on this partitioned data

• These joins would require shuffling

Query Execution : Shuffling

• Standard shuffle requires all-to-all communication

• For small joins, starling performs 2sr reads

• For large joins, these many reads are unacceptable

• Starling uses multistage shuffle by introducing combiners

• This brings down the number of reads to 2(s/p + r/f)

• Cost for additional writes by combiners is negligible

Query Execution : Assigning Tasks and Pipelining

• Trade-off between performance and cost

• Starling exposes this as user configured parameters

• Starling uses pipelining between stages to reduce query latency

• Consumer stages begin when a large fraction of producer inputs is available

Assigning Tasks

Pipelining

Stragglers

• S3 requests often suffer from poor tail latency

• Tasks in intermediate stages can Straggle

• Causes dependent tasks to stall

• To counter this, starling implements read and write straggler mitigation techniques

Stragglers : Read Straggler Mitigation

• Observe how long a request takes compared to its
expected completion time

• Expected query response time : r = l + (b/tc)

• If S3 fails to respond to a request within a fixed
factor of the expected time, Starling sends a
duplicate request

• It accepts whichever response returns first, and
closes the other connection

Stragglers : Write Straggler Mitigation

• In most cases, requests sent to S3 quickly, but
response from S3 may be delayed

• Using a strategy similar to RSM, Starling may
react slowly to such cases

• Additional model to predict response times for
writes once request has completed sending

• Second write request is started on a new
connection if a straggler occurred as per these
models

Evaluation : Experimental Setup

• 1,000 (1TB) TPC-H [16] dataset for most experiments, and scale factor 10,000
(10TB) for the scaling experiment

• Systems Compared against

• Amazon Redshift

• dc – dense compute

• ds – dense storage

• dk – Distribution key and ordering enabled

• dd – no distribution key and ordering

• Redshift with Spectrum

• Presto-4 with 4 workers

• Presto-16 with 16 workers

• Amazon Athena

Evaluation : Cost of Operation

• Starling is the least expensive system of all configurations when query volumes are moderate

Evaluation : Query Latency

• For repeated workloads that are cost insensitive, a provisioned system with pre-loaded
local data and tuned schema is still the best choice

• But for ad-hoc analytics, Starling has the lowest query latency

Evaluation : Scalability

• Starling scales on a query-by-query basis and thus is able to be more flexible to changes in input
data size as compared to other provisioned systems

Evaluation : Pay-per-query Services

• Athena provides a similar model and is cost per query competitive with Starling

• However, it is not suitable for ad-hoc query workloads

• Many queries do not run

• The ones which do run have higher latency

• Doesn't scale well for larger datasets

	Slide 1: Starling: A Scalable Query Engine on Cloud Functions
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

