Starling: A Scalable Query Engine on
Cloud Functions
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Why Cloud Functions?

* Canread directly from Cloud Storage
* Low startup time and billed on per-invocation basis
* Many functions can be invoked in parallel (tunable parallelism/performance)




Challenges with Cloud Functions?

Analytical gueries can run for hours, but cloud function execution is limited to a few minutes
* Cloud functions execute in resource constrained environments

Analytical queries require shuffling data, but cloud function do not allow communication
between function invocations




Design : Starling Architecture
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Figure 1: Query Execution in Starling, Opaque cloud components in blue, Starling components in yellow




Data Management in Starling

e Starling needs to work efficiently with raw data for competitive performance
* Base Tables and Intermediate State are both stored in Amazon S3
* Data shuffling requires all-to-all communication which has a high cost in S3

* One of the ways Starling mitigates this is by

* enabling producers to write a single partitioned file
* consumers read only the relevant partitions




Storage Latency Mitigation

* S3 has high aggregate throughput but much higher latency than other shuffling options
* Tasks perform several reads in parallel as opposed to performing blocking reads

* S3 does not guarantee read-after-write consistency

* Recently written objects to S3 by Producers may not be readily visible to Consumers

e Starling mitigates this risk by writing the same object to two different keysin S3

* Reduces the risk that a single visibility issue slows down all consumers




Query Execution : Relational Operator Implementation

* Operators implemented as a series of nested loops
* enables pipelining of operations

* BroadcastJoins:
* Inputtask for inner relation writes a single objectto S3
* Join tasks read inner relation and their subset of outer relation to perform join

* Partitioned Hash Joins:
* Inputtask writes partitioned file (partitioned on join key) to S3 for both relations
* Join tasks perform hash join on this partitioned data
* These joins would require shuffling




Query Execution : Shuffling

Standard shuffle requires all-to-all communication

For small joins, starling performs 2sr reads

For large joins, these many reads are unacceptable
Starling uses multistage shuffle by introducing combiners
This brings down the number of reads to 2(s/p + r/f)

Cost for additional writes by combiners is negligible
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Figure 2: Starling multistage shuffle, function execu-
tions in blue, S3 Objects in shades of red showing par-
titions. Lines are reads and arrows are writes



Query Execution : Assigning Tasks and Pipelining

Assigning Tasks

* Trade-off between performance and cost
* Starling exposes this as user configured parameters

Pipelining

e Starling uses pipelining between stages to reduce query latency
* Consumer stages begin when a large fraction of producer inputs is available




Stragglers

* S3requests often suffer from poor tail latency

* Tasksin intermediate stages can Straggle

* Causes dependent tasks to stall

* To counter this, starling implements read and write straggler mitigation techniques




Stragglers : Read Straggler Mitigation

* Observe how long a request takes compared to its
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Stragglers : Write Straggler Mitigation

In most cases, requests sent to S3 quickly, but
response from S3 may be delayed

Using a strategy similar to RSM, Starling may
react slowly to such cases

Additional model to predict response times for
writes once request has completed sending

Second write request is started on a new

connection if a straggler occurred as per these
models
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Figure 4: Write latency percentiles for 100MB writes
to $3 from AWS Lambda. Comparing WSM off, with a
single timeout, and fully on



Evaluation : Experimental Setup

1,000 (1TB) TPC-H [16] dataset for most experiments, and scale factor 10,000
(10TB) for the scaling experiment
* Systems Compared against
 Amazon Redshift
 dc - dense compute
 ds - dense storage
e dk— Distribution key and ordering enabled
* dd - no distribution key and ordering
* Redshift with Spectrum
* Presto-4 with 4 workers
* Presto-16 with 16 workers
 Amazon Athena




Evaluation : Cost of Operation
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Figure 5: Daily cost with increasing queries of Starling
and configurations with data stored in S3

e Starling is the least expensive system of all configurations when query volumes are moderate




Evaluation : Query Latency
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Figure 6: Geometric mean of latency on 1TB dataset

* Forrepeated workloads that are cost insensitive, a provisioned system with pre-loaded
local data and tuned schema is still the best choice

* But for ad-hoc analytics, Starling has the lowest query latency




Evaluation : Scalability
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Figure 7: Geometric mean of latency on 10TB dataset

* Starling scales on a query-by-query basis and thus is able to be more flexible to changes in input
data size as compared to other provisioned systems




Evaluation : Pay-per-query Services

* Athena provides a similar model and is cost per query competitive with Starling

* However, it is not suitable for ad-hoc query workloads
* Many queries do not run
* The ones which do run have higher latency
* Doesn't scale well for larger datasets
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