

# Starling: A Scalable Query Engine on Cloud Functions



### **Motivation**

- Modern Analytical workloads require certain key features from Databases
  - Does not require loading of data
  - Pay by query
  - Tunable performance
- Existing Cloud native databases do not provide all the features required by modern analytical workloads

| System                   | Does not        | Pay by | Tunable     |
|--------------------------|-----------------|--------|-------------|
|                          | require loading | query  | performance |
| Amazon Athena            | 1               | 1      | X           |
| Snowflake                | ×               | √*     | 1           |
| Presto                   | 1               | ×      | 1           |
| Amazon Redshift          | ×               | ×      | 1           |
| <b>Redshift Spectrum</b> | 1               | ×      | 1           |
| Google BigQuery          | 1               | 1      | X           |
| Azure SQL DW             | 1               | ×      | 1           |
| Starling                 | 1               | 1      | 1           |

 Table 1: Comparison of cloud analytics databases



### Why Cloud Functions?

- Can read directly from Cloud Storage
- Low startup time and billed on per-invocation basis
- Many functions can be invoked in parallel (tunable parallelism/performance)



### **Challenges with Cloud Functions?**

- Analytical queries can run for hours, but cloud function execution is limited to a few minutes
- Cloud functions execute in resource constrained environments
- Analytical queries require shuffling data, but cloud function do not allow communication between function invocations



### **Design : Starling Architecture**



Figure 1: Query Execution in Starling. Opaque cloud components in blue, Starling components in yellow



### **Data Management in Starling**

- Starling needs to work efficiently with raw data for competitive performance
- Base Tables and Intermediate State are both stored in Amazon S3
- Data shuffling requires all-to-all communication which has a high cost in S3
- One of the ways Starling mitigates this is by
  - enabling producers to write a single partitioned file
  - consumers read only the relevant partitions



### **Storage Latency Mitigation**

- S3 has high aggregate throughput but much higher latency than other shuffling options
- Tasks perform several reads in parallel as opposed to performing blocking reads
- S3 does not guarantee read-after-write consistency
- Recently written objects to S3 by Producers may not be readily visible to Consumers
- Starling mitigates this risk by writing the same object to two different keys in S3
- Reduces the risk that a single visibility issue slows down all consumers



### **Query Execution : Relational Operator Implementation**

- Operators implemented as a series of nested loops
  - enables pipelining of operations
- Broadcast Joins :
  - Input task for inner relation writes a single object to S3
  - Join tasks read inner relation and their subset of outer relation to perform join

#### • Partitioned Hash Joins :

- Input task writes partitioned file (partitioned on join key) to S3 for both relations
- Join tasks perform hash join on this partitioned data
- These joins would require shuffling



## **Query Execution : Shuffling**

- Standard shuffle requires all-to-all communication
- For small joins, starling performs 2sr reads
- For large joins, these many reads are unacceptable
- Starling uses multistage shuffle by introducing combiners
- This brings down the number of reads to 2(s/p + r/f)
- Cost for additional writes by combiners is negligible



Figure 2: Starling multistage shuffle, function executions in blue, S3 Objects in shades of red showing partitions. Lines are reads and arrows are writes



## **Query Execution : Assigning Tasks and Pipelining**

### **Assigning Tasks**

- Trade-off between performance and cost
- Starling exposes this as user configured parameters

### Pipelining

- Starling uses pipelining between stages to reduce query latency
- Consumer stages begin when a large fraction of producer inputs is available



### Stragglers

- S3 requests often suffer from poor tail latency
- Tasks in intermediate stages can Straggle
- Causes dependent tasks to stall
- To counter this, starling implements read and write straggler mitigation techniques



### **Stragglers : Read Straggler Mitigation**

- Observe how long a request takes compared to its expected completion time
- Expected query response time : r = I + (b/tc)
- If S3 fails to respond to a request within a fixed factor of the expected time, Starling sends a duplicate request
- It accepts whichever response returns first, and closes the other connection



Figure 3: Read latency percentiles for 256KB reads to S3 from AWS Lambda. Comparing RSM off and on



### **Stragglers : Write Straggler Mitigation**

- In most cases, requests sent to S3 quickly, but response from S3 may be delayed
- Using a strategy similar to RSM, Starling may react slowly to such cases
- Additional model to predict response times for writes once request has completed sending
- Second write request is started on a new connection if a straggler occurred as per these models



Figure 4: Write latency percentiles for 100MB writes to S3 from AWS Lambda. Comparing WSM off, with a single timeout, and fully on



### **Evaluation : Experimental Setup**

- 1,000 (1TB) TPC-H [16] dataset for most experiments, and scale factor 10,000 (10TB) for the scaling experiment
- Systems Compared against
  - Amazon Redshift
    - dc dense compute
    - ds dense storage
    - dk Distribution key and ordering enabled
    - dd no distribution key and ordering
  - Redshift with Spectrum
  - Presto-4 with 4 workers
  - Presto-16 with 16 workers
  - Amazon Athena



### **Evaluation : Cost of Operation**





• Starling is the least expensive system of all configurations when query volumes are moderate



### **Evaluation : Query Latency**



#### Figure 6: Geometric mean of latency on 1TB dataset

- For repeated workloads that are cost insensitive, a provisioned system with pre-loaded local data and tuned schema is still the best choice
- But for ad-hoc analytics, Starling has the lowest query latency



### **Evaluation : Scalability**



#### Figure 7: Geometric mean of latency on 10TB dataset

• Starling scales on a query-by-query basis and thus is able to be more flexible to changes in input data size as compared to other provisioned systems



### **Evaluation : Pay-per-query Services**

- Athena provides a similar model and is cost per query competitive with Starling
- However, it is not suitable for ad-hoc query workloads
  - Many queries do not run
  - The ones which do run have higher latency
  - Doesn't scale well for larger datasets

