Lambada

Serverless analytics on cold data

Goal

To run data analytics on serverless computing framework

in a cost effective manner.

Goal

To run data analytics on serverless computing framework
in a cost effective manner.
Q. What is serverless and why?

Q. What kind of data analytics are cost effective on serverless?

Cloud Computing - Trend

Infrastructure-as-a-service s Software-as-a-service

e Virtualize computing resources
e AWS(2006), GCP (2008), Azure (2010)

Platform-as-a-service

e Build and Deploy applications on cloud
e Amazon Elastic bean, Google App services

DBaaS, Data Security as a service
Snowflake, Spanner

® Function-as-a-service

° Ultimate granularity, resource
utilization
° AWS Lambda, Google Cloud Functions.

Serverless - SWOT

—>¢— FaaS «=O=: laaS
O_l vM 8 workers
iom4d < ,
()] e,
£ O-.OZLG
b= L 64
I R S — oo .28
n= { VM startup
= o
= 1m 4
=
o
10s A
3 4096
A T T
10 ¢ 13

Cost

(a) Job-scoped resources.

13 VMs (S3) —]
7 VMs (NVMe)
3 VMs (DRAM)

Qaas (s3)
Faas (S3)

100 4

Hourly cost [$]
=
(@]

i 2 4 8 16 32 64
Queries per hour

(b) Always-on resources.

Good for

Bad for

Low-latency queries (interactive)

Long running analytics

Sporadic query load (ie, likely cold data)

High sustained query load

Goal

To run data analytics on serverless computing framework
in a cost effective manner.
Q. Why serverless?

s Ultimate elasticity, granularity, pay-as-you-go model.
Q. What kind of data analytics are cost effective on serverless?

% Interactive, infrequent queries - " lone-wolf data scientist use case’

S ~ Into the cerverlece

Architecture - for data analytics

driver

Shared serverless storage

SQS

DynamoDB

A local coordinating driver
Data parallel query plans (
difference with starling?)

Serverless workers

Shared serverless storage for
intermediate and output data

Architecture - for data analytics

Challenges?

e Cold start problem

e Network-Efficient Scan

Shared serverless storage e Efficient Exchange Operator

SQS

driver

DynamoDB

Prob #1: The cold start

Q. How to invoke thousands of AWS lambda workers fast?

% Invoke sequentially?

% Use concurrentinvocation in driver?

- (v or)
Lt . Runtime Extension
n. Runtime ini - i shutdow

INVOKE INVOKE SHUTDOWN

Cold start Warm start

HOW'D YOU SOLVE THE ICING PROBLEM?

Prob #1: The cold start

Q. How to invoke thousands of AWS lambda workers fast?

|dea: Multi-level invocation - 3-4x speedup over concurrent driver invocations

Il Invoking workers
34 E@E Own invocation

7Y I Before own invocation

2
£
second gen =

dri workers 1

river — | >
0
. 0 20 40 60
First gen Worker ID

workers

Prob #1: The cold start

Q. How to invoke thousands of AWS lambda workers fast?

|dea: Multi-level invocation - 3-4x speedup over concurrent driver invocations

driver

First gen
workers

second gen
workers

Time [s]

Il Invoking workers
[Own invocation
I Before own invocation

20 40 60
Worker ID

Q. Why better though?
Q. Is this method resilient to failures?

Prob #2: Efficient Network Scan

Q. How to do perform a network efficient scan?

O

% Use parquet format
> Columnar storage of row groups
> Pruning, efficient projection
> ~ideaasinsnowflake
% Use concurrency (~ Starling)
> Download data from multiple files
> Download multiple rows and different
columns from same row if possible
> Chunk-size vs latency trade off

« Canuse computational push-down as well

ONE DOES NOT SIMPLY

et >

o’ E

el .
SCAN DATA FROM CLOUD STORAGE

Prob #3: Efficient Exchange Op

Q. How to exchange data amongst workers efficiently?

First cut:

Algorithm 1 Basic S3-based exchange operator.

1

U R

func BAsiCEXCHANGE(p: Int, £: Int[1..P], R: Record[1..N],
FOrRMATFILENAME: Int x Int — String)
partitions «<— DRAMPARTITIONING(R, P)
for (receiver, data) in partitions do
WRITEFILE(FORMATFILENAME(receiver, p), data)

for source in P do
data < data U READFILE(FORMATFILENAME(p, source))

return data

Issues:
« Quadratic number of requests!!
‘0

% Billing on number of requests

Region: US East (Ohio) *

S3 Standard

S3 Intelligent-Tiering *

PUT, COPY, POST, LIST requests GET, SELECT, and all other requests

(per 1,000 requests) (per 1,000 requests)
$0.005 $0.0004
$0.005 $0.0004

Prob #3: Efficient Exchange Op

Q. How to exchange data amongst workers efficiently?

% Multi-level exchange
[° ° ° °]
Algorithm 2 Two-level S3-based exchange operator.
1: func TWOLEVELEXCHANGE(p: int, P: int, R: Record [1..N]) [PY ° PY PY]
2 (pr.p2) < Hs(p)
3: P; —{qlge{1.P}:qi=pi}fori=12
4 fi & (s, t) = “s3://b{i}/snd{s}/rcv{r}” fori=1,2 [® . ® ®]
5: tmp < BAsICGROUPEXCHANGE(p, P1, fi, R, H?)
6: return BASICGROUPEXCHANGE(p, Ps, le tmp, H}) [° ° ° °] Algorithm #reads #writes #lists #scans
) J J UJ 11 P? P? Oo(P) i
. . 1l- p? % Oo(p 1
% Write combining st pass L S
> Each worker writes all data to be W 2nd pass 21 Zig ZPXF gg;
. . . 2l-wc 2 2
shared in a single file. o =
31 3PVP 3PVP O(P)
3l-wc 3PP 3P o(P)

Q. How does this compare with starling?

Evaluation

Q1. How does varying AWS Lambda memory and num of workers affect query run-time and cost?
Q2. How does Lambada compare against commercial QaaS services?
Q. How does Lambada perform over realistic workloads?

Q. How good is Lambada’s exchange operator?

Evaluation

. Id & v "] = " Lambada (cold)
) =O= CO X ambada (co
g 50 1 50 1 —« hot 50 1 g lolh: u : : L : —O— Lambada (hot)
; !O e 3 [¢] ,s Q g 1:]] X]] x : gthgna -
£ 254 y. & . g Q X 8 u] “ igQuery (co
g VA R0 2 1(1)5 1@ o | > s - | & O | =0~ BigQuery (hot)
T N / S - T T T - T "
2 0 Y r 0 T 1¢ 10¢ 1% 10% 1¢ 10¢ 1% 10% 1¢ 10¢ 1% 10% 1¢ 10¢ 1% 10%
0 5 0 5 0 5 Cost Cost Cost Cost
Cost [¢] Cost [¢] Cost [¢]
(a) Q1,SF 1k (b) Q1, SE 10k. (c) Q6, SF1k. (d) Q6, SF 10k.
(@) F =1, varying M. (b) M=1792 MiB, (c) Varying M
varying F. and F. Figure 10: Comparison of Lambada (using F = 1 and varying M) with commercial QaaS$ systems.
Al. Increasing workers and memory speeds up A2. a) Lambada, on most workloads, has competitive
execution but at diminishing rates and increasing cost performance with commercial QaaS.

b) The pricing model of Lambada reflects the resources
utilized more accurately than QaaS systems.

Evaluation

Table 3: Running time of S3-based exchange operators.

#Workers Storage Layer

100

Bl Running time EZE Cost VMs S3
“ 80 - Pocket [27] 250 585 98s
E Leo o 500 28's
° 2 1000 18s
E r40 g Locus [38] dynamic 80sto 140s
2 © Qubole [41] 400 580s
L Lambada 250 22s
Q1 Q2 Q3 Q4 Q5 Q6 500 15s
1000 13s
Figure 12: Hydrologist (Q1-Q5) and HEP queries (Q6).
A3. Can process TBs of scientific data within seconds A4. a) Lambada’s exchange operator is more scalable as it
at sub-dollar cost. uses multiple buckets.

b) Subject to slow down by stragglers

Discussion - what did they get right?

Y
L X4

Identifying the right workload

Y
L X4

Purely serverless - “no additional infrastructure”

Y
L X4

“Multi-level” efficient cloud query functions
> The exchange op is pretty cool!

Y
L X4

Extensive Evaluation \vﬂ b

34
g s
»

£

My product s 99.1% serveriess

Discussion - critique

% Handling faults
> What is the cost of failure during multi-level batch invocation and shuffle?
% Handling stragglers
> Can use the retry mechanism as in Starling
% Pipelining worker tasks?
> They do mention that their work is similar to Starling which uses pipelining

« Omitted details about parallelised query plans.

