
Lambada
Serverless analytics on cold data

Goal

To run data analytics on serverless computing framework

in a cost effective manner.

Goal

To run data analytics on serverless computing framework

in a cost effective manner.

Q. What is serverless and why?

Q. What kind of data analytics are cost effective on serverless?

Cloud Computing - Trend

Infrastructure-as-a-service

Platform-as-a-service

Software-as-a-service

Function-as-a-service

● DBaaS, Data Security as a service
● Snowflake, Spanner

● Build and Deploy applications on cloud
● Amazon Elastic bean, Google App services

● Virtualize computing resources
● AWS(2006), GCP (2008), Azure (2010)

● Ultimate granularity, resource
utilization

● AWS Lambda, Google Cloud Functions.

Serverless - SWOT

Good for Bad for

Low-latency queries (interactive) Long running analytics

Sporadic query load (ie, likely cold data) High sustained query load

Goal

To run data analytics on serverless computing framework

in a cost effective manner.

Q. Why serverless?

❖ Ultimate elasticity, granularity, pay-as-you-go model.

Q. What kind of data analytics are cost effective on serverless?

❖ Interactive, infrequent queries – `lone-wolf data scientist use case`

~ Into the serverless

Architecture - for data analytics

● A local coordinating driver

● Data parallel query plans (

difference with starling?)

● Serverless workers

● Shared serverless storage for
intermediate and output data

Architecture - for data analytics

● Cold start problem

● Network-Efficient Scan

● Efficient Exchange Operator

Challenges ?

Prob #1: The cold start
Q. How to invoke thousands of AWS lambda workers fast?

❖ Invoke sequentially?

❖ Use concurrent invocation in driver?

Prob #1: The cold start
Q. How to invoke thousands of AWS lambda workers fast?

driver

Idea: Multi-level invocation - 3-4x speedup over concurrent driver invocations

second gen
workers

First gen
workers

Prob #1: The cold start
Q. How to invoke thousands of AWS lambda workers fast?

driver

Idea: Multi-level invocation - 3-4x speedup over concurrent driver invocations

second gen
workers

First gen
workers Q. Why better though?

Q. Is this method resilient to failures?

Prob #2: Efficient Network Scan

Q. How to do perform a network efficient scan?

❖ Use parquet format
➢ Columnar storage of row groups
➢ Pruning, efficient projection
➢ ~ idea as in snowflake

❖ Use concurrency (~ Starling)
➢ Download data from multiple files
➢ Download multiple rows and different

columns from same row if possible
➢ Chunk-size vs latency trade off

❖ Can use computational push-down as well

Prob #3: Efficient Exchange Op
Q. How to exchange data amongst workers efficiently?

Issues:
❖ Quadratic number of requests!!
❖ Billing on number of requests

First cut:

Prob #3: Efficient Exchange Op

Q. How to exchange data amongst workers efficiently?

❖ Multi-level exchange

❖ Write combining
➢ Each worker writes all data to be

shared in a single file.

1st pass
2nd pass

Q. How does this compare with starling?

Evaluation

Q1. How does varying AWS Lambda memory and num of workers affect query run-time and cost?

Q2. How does Lambada compare against commercial QaaS services?

Q. How does Lambada perform over realistic workloads?

Q. How good is Lambada’s exchange operator?

Evaluation

A1. Increasing workers and memory speeds up
execution but at diminishing rates and increasing cost

A2. a) Lambada, on most workloads, has competitive
performance with commercial QaaS.

b) The pricing model of Lambada reflects the resources
utilized more accurately than QaaS systems.

Evaluation

A3. Can process TBs of scientific data within seconds
at sub-dollar cost.

A4. a) Lambada’s exchange operator is more scalable as it
uses multiple buckets.

b) Subject to slow down by stragglers

Discussion - what did they get right?

❖ Identifying the right workload

❖ Purely serverless - “no additional infrastructure”

❖ “Multi-level” efficient cloud query functions
➢ The exchange op is pretty cool!

❖ Extensive Evaluation

My product is 99.1 % serverless

* Authors

Discussion - critique

❖ Handling faults

➢ What is the cost of failure during multi-level batch invocation and shuffle?

❖ Handling stragglers

➢ Can use the retry mechanism as in Starling

❖ Pipelining worker tasks?

➢ They do mention that their work is similar to Starling which uses pipelining

❖ Omitted details about parallelised query plans.

Thank you!!!

