
CLOUDBURST : Stateful
Functions-as-a-Service

Saanidhi Arora

Introduction

• Function-as-a-Service (FaaS) platforms and "serverless" cloud

computing are gaining popularity

• Serverless target stateless functions with minimal I/O and

communication

• Cloudburst: a stateful FaaS platform

FaaS & Serverless Computing

• Simplified Cloud

Development

• Transparent Autoscaling

using Disaggregation of

Storage and Compute

Services

• Ineffective Function

Composition

• Lack of Direct

Communication

• High Latency Access to

Shared Mutable State

ADVANTAGES ISSUES

Solution

• Logical Disaggregation with Physical Colocation -

distributed storage and local caching

• Coordination-free consistency - quorum expensive

• Programmability - easy for developers

Cloudburst

Serverless - Autoscaling
Low-Latency Mutable

State and
Communication

Programming Interface

• Cloudburst functions - Regular python functions triggering

remote computation in the cloud

• Results - directly to client or stored in KVS retrieved using

CloudburstFuture object

• Function Arguments - KVS references or Python objects

• Function compositions as DAGs

Architecture

• Function executors - long

running Python process

• Caches - frequently accessed

data

• Function Schedulers - route

invocation requests, packed into

VMs

• Monitoring and Resource

Management System - tracks

system load and performance

Architecture

Function Scheduler

• Goal - low latency function scheduling

• Scheduling Mechanisms - register or invoke functions.

New functions registered - store in Anna, update shared

KVS list

• Scheduling Policy - heuristic decisions using metadata,

prioritize data locality. Allocate or deallocate resources

based on the workload

Fault Tolerance

• Anna’s k-fault tolerance mechanism

• DAG re-execution when machine failure

Consistency Guarantees

• Every function in DAG - executed on different machines,

causing inconsistencies

• Repeatable Read Invariant - read most update version of

key within DAG, without updates - all functions same

version

• Causal Consistency Invariant - reads and writes respect

Lamport’s “happens before” relation. If k
i
→l

j
 and l

j
 is read,

subsequent functions must not see any version before k
i

Distributed Session Protocol

• Consistency across functions

• Repeatable read

• Cache creates snapshot version of locally cached objects on first read

• Propagate cache address list and version timestamp to downstream

executors

• If read, version not stored locally - fetch from upstream cache

• If read, stored locally - returns cached value

• If not read, any version

Distributed Session Protocol

• Causal Consistency

• Causally consistent cache store

• Cache stores causal cut - stores key versions and dependencies

• Propagate Read Set Metadata + Causal Dependencies

• Check if local cached key’s vector clock is causally concurrent

• If yes - return local value, else query upstream cache

Lattice Encapsulation

• Resolve conflicts from concurrent updates in Anna

• Cloudburst encapsulates python objects into lattices

• Last Writer Wins Lattice - eventual consistency, global

timestamp and value. Use the last value

• Causal consistency Lattice - Key k in lattice - Anna vector

clock-> k’s version, what all keys k depends upon. Choose

which vector clock dominates

Evaluation

• Setup - us-east-1a AWS AZs,
Schedulers - AWS c5.large EC2
VMs , and function executors -
c5.2xlarge EC2 VMs

• Mechanism Evaluation -
Function Composition
square(increment(x:int))

Cloudburst’s function composition matches state-of- the-art
Python runtime latency and outperforms commercial serverless
infrastructure by 1-3 orders of magnitude.

Evaluation

• Mechanism Evaluation - Data
Locality

large input data but light
computation: sum of all
elements across 10 input
arrays.

While performance gains vary across configurations and data
sizes, avoiding network round trips to storage services enables
Cloudburst to improve performance by 1-2 orders of magnitude.

Evaluation

• Mechanism Evaluation -
Autoscaling

ability to detect and respond
to workload changes.

Cloudburst mechanisms for autoscaling enable policies that can
quickly detect and react to workload changes. We are mostly
limited by the high cost of spinning up new EC2 instances. The
policies and cost of spinning up instances can be improved in future
without changing Cloudburstś architecture.

Questions

Thank You!

