
PolarDB Serverless

A Cloud Native Database for Disaggregated Data
Centers

Nian Lu

Previous DB Architecture

• Monolithic Server • Separation of compute and
storage

Disaggregation Architecture

Benefits
• More cost-effective auto-scaling
• Better auto-pause capacity
• Scaling transparency

Challenges
• Execute transactions correctly
• Execute transactions efficiently
• Build a reliable system

Local Cache of Remote Memory
Problem: Cache Coherency
Solution: Cache Invalidation Mechanism

• set the corresponding bit in PIB
• look up PRD to get a list of RO nodes which hold copies in their local cache
• and then set the corresponding bit in PIB on those RO nodes

PIB(Page Invalidation Bitmap) :
0 -> latest, 1-> out of data
PAT(Page Address Table): hash table
that records the location and reference
count of each page
PRD(Page Reference Directory): record
reference of page obtained by node

Slab: unit of memory allocation
Slab Node: The memory node that
serves slabs
Home Node: first slab is located

B+Tree’s Structural Consistency

• Node layer: RW node, RO nodes

• Problem: Structure Modification
Operations (SMO)

• Solution: PL(Page Latch)
• add on to the local page latch, make sure the integrity

of index structure in a multi-node environment

• Two steps approaches
• an optimistic tree traversal for insert/delete
• a "pessimistic" traversal: If the optimistic traversal

finds the leaf page is relatively full or empty and a
SMO is possible, then it will restart a "pessimistic"
traversal from the root again,

Snapshot Isolation

CTS(centralized timestamp Service)
• Read-Write Transaction: acquire the timestamp from CTS twice(cts_read, cts_commit), it writes

down cts_commit together with the records it modified
• read-only transaction: get cts_read timestamp once
• Reads within a transaction: just read records whose cts_commit < it’s cts_read.

• Problem: cts_commit asychronously update
• concurrent transactions cannot determine the version of rows without cts_commit.

Solution:
• CTS Log data structure

• circular array, which records the cts_commit timestamp of the most recent read-write transactions

• One-sided RDMA verbs
• The CTS timestamp counter is fetched and incremented atomically using RDMA CAS
• CTS Log is placed in a contiguous memory region registered to RDMA NIC

Other technologies

• Page materization offloading
• seperate log chunk and page chunk
• replay redo log to pages on storage node

• Auto scaling
• proxy node take responsibility for

seamless switch

Reliability and Failure Recovery

• Database Node Recovery
• A failed Read-Only node can be easily replaced with a new one using

pages in the shared memory
• New Read-Write Node

• plays redo logs to recovery committed transactions
• synchronize remote memory, evict invalidate and newer pages
• plays undo logs to rollback uncommitted transactions in the background

• Memory Node Recovery
• Recovered from storage

• Cluster Recovery
• Recovered from storage

Thanks!

