Cloud Programming Simplified:
A Berkeley View on Serverless
Computing

Varan Shukla

Spiembons e

s flmor
MO O IO R W DA AN O il . N TN N
ot i st AT ST W e W SR
A s A g ! ot s BRI
v Ol ey g e IR

ST R s 1 i3 RN ey Y
I o

! ,,‘m o, ' o i Jw-:;‘:f*m -ﬂJ-'-* A
iamm&'m o -

Background

e Obstacles and Research Opportunities
Above the Clouds: A Berkeley View of Cloud
Computing e Advantages:

o Infinite Compute Resources
Eliminate up-front commitment
Pay for use

Economy of scale

Simplify Operations

Increase utilization by multiplexing

Michael Armbrust
Armando Fox
) Rean Griffith
ifa Anthony D. Joseph
IS . Randy H. Katz
= 3 Andrew Konwinski
i 2 Gunho Lee
X David A. Patterson
Ariel Rabkin
lon Stoica
Matei Zaharia

O O O O O

Electrical Engineering and Computer Sciences
University of California at Berkeley

BLIRION B

Technical Report No. UCB/EECS-2009-28
http://www.eecs.berkeley. 'ubs/T -2009-28.html

ds
"““a“i §

OO DT

reffay 1 Nk h LR g
y) 1t
o R M‘fﬂx'm,\ \4?3{!:.1..4"
il o (N

!
! 4 ,.!.”ﬁ\ 5
| 2{ ‘v..‘ ", ‘u‘,i.
;&.

February 10, 2009

i O R

QRLh i

- Proliferation of virtual resources to manage

v .
Fien Y TR, S
ﬂm:w RS IS, A

Introduction

e 2 competing approaches: EC2 vs App Engine
e Why EC2 won?
o Simple to port
e Customers still need to manage the virtual resources themselves.
o Is there an easier path?
e AWS Lambda: cloud functions and serverless(an oxymoron)
e BaaS: Backend as a Service
o specialized frameworks for app specific requirements
€ Serverless = Faas + Baas
€ Autoscale, billed on actual usage

Serverful vs Serverless

Parallels Low-level assembly vs High-level Programming

Characteristic

AWS Serverless Cloud

AWS Serverful Cloud

PROGRAMMER

When the program is run

On event selected by Cloud user

Continuously until explicitly stopped

Programming Language

JavaScript, Python, Java, Go, C#, etc.*

Any

Program State

Kept in storage (stateless)

Anywhere (stateful or stateless)

Maximum Memory Size

0.125 - 3 GiB (Cloud user selects)

0.5 - 1952 GiB (Cloud user selects)

Maximum Local Storage

0.5 GiB

0 - 3600 GiB (Cloud user selects)

Maximum Run Time

900 seconds

None

Minimum Accounting Unit

0.1 seconds

60 seconds

Price per Accounting Unit

$0.0000002 (assuming 0.125 GiB)

$0.0000867 - $0.4080000

Operating System & Libraries

Cloud provider selects®

Cloud user selects

SYSADMIN

Server Instance

Cloud provider selects

Cloud user selects

Scaling®

Cloud provider responsible

Cloud user responsible

Deployment

Cloud provider responsible

Cloud user responsible

Fault Tolerance

Cloud provider responsible

Cloud user responsible

Monitoring

Cloud provider responsible

Cloud user responsible

Logging

Cloud provider responsible

Cloud user responsible

Serverful vs Serverless

o EventData | | o ot A
Applications i 1
pPp Web APIs Processing | : Future Serverless Applications :
Cloud Object Key-Value Mobile Backend
Functions Storage Database Database
c Serverless
S I | S . s,
= Big Data Big Data : : Future Serverless
0 . .
i Query Transform Messaging ¢ Cloud Services
z e e
<
o
)g Base Cloud w || vec Block IAM Billing | | Monitoring
e Platform Storage
[
]
Hardware Server Network Storage Accelerator

Key Distinctions

e Decoupled Computation and Storage

o Stateless Computation and independent scaling
e Execute without managing resource allocation

o Auto provisioning

e Pay in proportion to actual usage of resource rather than for allocation

Merely a re-branding of previous offerings like PaaS? Nope
- Better autoscaling, strong isolation, platform flexibility & ecosystem

SiLinpnort

Autoscaling How?

e Need Strong performance & security isolation

e \Warm pool of VM instances

e Leverage Unikernels, library OSes, language based VMs, microVMs: Firecracker
How this relates to Kubernetes?
K8S lies somewhere in between - perfect match to hybrid solutions

Serverless is a paradigm shift - fully offloading operational responsibilities

Why is serverless attractive?

e Draw in new customers - makes cloud approachable & easier
e Ultilize unused resources

e Increased programming productivity

e Opportunities for software/hardware optimizations & research

e Fine grained accounting (~100ms)

Limitations

Application | Description Challenges Workarounds Cost-performance
Real-time On-the-fly Object store too Function-to- 60x faster, 6x
video video slow to support function cheaper versus
compression | encoding fine-grained communication VM instances.
(ExCamera) communication; to avoid object
functions too store; a function
coarse grained for | executes more
tasks. than one task.
MapReduce | Big data Shuffle doesn’t Small storage Sorted 100 TB
processing scale due to object | with low-latency, | 1% faster than
(Sort stores latency and | high IOPS to VM instances,
100TB) IOPS limits speed-up shuffle. | costs 15% more.
Linear Large scale Need large Storage with Up to 3x slower
algebra linear problem size to low-latency completion time.
(Numpy- algebra overcome storage high-throughput 1.26x to 2.5x
wren) (S3) latency, hard | to handle smaller | lower in CPU
to implement problem sizes. resource
efficient broadcast. consumption.
ML ML training | Lack of fast Storage with 3x-bx faster than
pipelines at scale storage to low-latency, high | VM instances, up
(Cirrus) implement IOPS to to 7x higher total
parameter server; implement cost.
hard to implement | parameter server.
efficient broadcast,
aggregation.
Databases Primary Lack of shared Shared file 3x higher cost per
(Serverless state for memory, object system can work | transaction than
SQLite) applications | store has high if write needs are | published TPC-C
(OLTP) latency, lack of low. benchmarks.

support for
inbound
connectivity.

Reads scale to
match but writes
do not.

MapReduce: their thoughts

Shuffle operation is a challenge with M x R transfers

100TB of data, 3GB blocks, 33k blocks, 2.22 billion IOPS

$12,000 in S3 alone

Solution: Use High performance but much expensive storage(ElastiCache)
Divide in stages to reduce storage size

2983s for $144 on 395 VMs v/s 2945s for $163 using AWS Lambda

M mappers R reducers M active R reducers M5 ecllye R reducers
mappers mappers

N
/ \

(]
\ ’
~

N
’ \
(|
\ ’

LNAAX]

MXR transfers (MXR)/S transfers (MXR)/S transfers
Stage 1 Stage S
(a) One stage Shuffle (b) Multi-stage Shuffle

Limitations

e |nadequate storage for fine-grained operations

o calls for development of ephemeral and durable storage

e Lack of fine-grained coordination

o Calls for VM-based rendezvous server/notification systems

o Name function instances & allow direct addressability to access internal state

Limitations

e Poor performance for standard communication patterns
o Shuffle is worst with (N x K)*2 messages v/s N*2

O NO ContrOI Of |OCat|0n O Functions/tasks DVM-based instances == remote messages ---- local messages

e Predictable performance

o Cold start latency .

o Variable Hardware Resources ‘Qg} [@O} ‘06} [O\Q}

Broadcast Aggregation

(a) VM-based communication patterns.

Broadcast Aggregation

(b) Function-based communication patterns.

What Serverless Computing Should Become

Note challenges in 5 areas:

e Abstraction Challenges
o Resource requirements
m Explicit control? Against the spirit
m Instead raise the level of abstraction: infer eg. static code analysis
o Data Dependencies
m Suboptimal placement = inefficient communication

m Specify its computation graph

What Serverless Computing Should Become

e System Challenges
o High-performance, affordable, transparently provisioned storage
m Ephemeral Storage - dist. In-memory service leveraging statistical multiplexing
m Durable Storage - transparently provisioned
o Coordination/Signaling Service
o Minimise Startup time

m Unikernels, warm pools, incremental loading

e Computer Architecture Challenges

o Hardware Heterogeneity, Pricing, and Ease of Management
m Hardware-software co-design
m Domain Specific Architectures(GPUs, TPUs)

What Serverless Computing Should Become

e Networking Challenges
o K2 more messages when K functions on a VM
o Ways to address
m Combine and share over a single VM
m Explicit placement
m Co-locate with computation graph
o Arguably against the spirit, rescue flexibility for provider

e Security Challenges
o Scheduling randomization and physical isolation
m Co-residency attacks are difficult
o Fine-grained security contexts

o Oblivious serverless to prevent leaking access patterns

Fallacies and Pitfalls

e More Expensive: could actually end up costing much less

e Unpredictable Costs: bucket based pricing

e Easy to port: not really, need a standard

e Vendor lock in strong: cross-cloud support

e Cannot handle low-latency apps needing predictable performance: not really

e Few “elastic” services are actually as flexible

Predictions

e Serverless skyrockets while serverful although not disappear, will decline
e Expect new BaaS storage services facilitated by serverful
e Will be simpler and more secure

e Billing models will evolve

e Serverless computing will become the default computing paradigm of the Cloud Era, largely
replacing serverful computing and thereby bringing closure to the Client-Server Era.

Thank You

Questions?

