
Cloud Programming Simplified:
A Berkeley View on Serverless

Computing
Varan Shukla

Background

● Obstacles and Research Opportunities
● Advantages:

○ Infinite Compute Resources
○ Eliminate up-front commitment
○ Pay for use
○ Economy of scale
○ Simplify Operations
○ Increase utilization by multiplexing

➔ Proliferation of virtual resources to manage

Introduction

● 2 competing approaches: EC2 vs App Engine
● Why EC2 won?

○ Simple to port
● Customers still need to manage the virtual resources themselves.

○ Is there an easier path?
● AWS Lambda: cloud functions and serverless(an oxymoron)
● BaaS: Backend as a Service

○ specialized frameworks for app specific requirements
◆ Serverless = Faas + Baas
◆ Autoscale, billed on actual usage

Serverful vs Serverless

Parallels Low-level assembly vs High-level Programming

Serverful vs Serverless

Key Distinctions

● Decoupled Computation and Storage

○ Stateless Computation and independent scaling

● Execute without managing resource allocation

○ Auto provisioning

● Pay in proportion to actual usage of resource rather than for allocation

Merely a re-branding of previous offerings like PaaS? Nope

- Better autoscaling, strong isolation, platform flexibility & ecosystem

support

Autoscaling How?

● Need Strong performance & security isolation

● Warm pool of VM instances

● Leverage Unikernels, library OSes, language based VMs, microVMs: Firecracker

How this relates to Kubernetes?

K8S lies somewhere in between - perfect match to hybrid solutions

Serverless is a paradigm shift - fully offloading operational responsibilities

Why is serverless attractive?

● Draw in new customers - makes cloud approachable & easier

● Utilize unused resources

● Increased programming productivity

● Opportunities for software/hardware optimizations & research

● Fine grained accounting (~100ms)

Limitations

MapReduce: their thoughts

● Shuffle operation is a challenge with M x R transfers
● 100TB of data, 3GB blocks, 33k blocks, 2.22 billion IOPS
● $12,000 in S3 alone
● Solution: Use High performance but much expensive storage(ElastiCache)
● Divide in stages to reduce storage size
● 2983s for $144 on 395 VMs v/s 2945s for $163 using AWS Lambda

Limitations

● Inadequate storage for fine-grained operations
○ calls for development of ephemeral and durable storage

● Lack of fine-grained coordination
○ Calls for VM-based rendezvous server/notification systems

○ Name function instances & allow direct addressability to access internal state

Limitations

● Poor performance for standard communication patterns
○ Shuffle is worst with (N x K)^2 messages v/s N^2

○ No control of location

● Predictable performance
○ Cold start latency

○ Variable Hardware Resources

What Serverless Computing Should Become

Note challenges in 5 areas:

● Abstraction Challenges
○ Resource requirements

■ Explicit control? Against the spirit

■ Instead raise the level of abstraction: infer eg. static code analysis

○ Data Dependencies

■ Suboptimal placement = inefficient communication

■ Specify its computation graph

What Serverless Computing Should Become

● System Challenges
○ High-performance, affordable, transparently provisioned storage

■ Ephemeral Storage - dist. In-memory service leveraging statistical multiplexing

■ Durable Storage - transparently provisioned

○ Coordination/Signaling Service

○ Minimise Startup time

■ Unikernels, warm pools, incremental loading

● Computer Architecture Challenges
○ Hardware Heterogeneity, Pricing, and Ease of Management

■ Hardware-software co-design

■ Domain Specific Architectures(GPUs, TPUs)

What Serverless Computing Should Become

● Networking Challenges
○ K^2 more messages when K functions on a VM
○ Ways to address

■ Combine and share over a single VM
■ Explicit placement

■ Co-locate with computation graph
○ Arguably against the spirit, rescue flexibility for provider

● Security Challenges
○ Scheduling randomization and physical isolation

■ Co-residency attacks are difficult
○ Fine-grained security contexts

○ Oblivious serverless to prevent leaking access patterns

Fallacies and Pitfalls

● More Expensive: could actually end up costing much less

● Unpredictable Costs: bucket based pricing

● Easy to port: not really, need a standard

● Vendor lock in strong: cross-cloud support

● Cannot handle low-latency apps needing predictable performance: not really

● Few “elastic” services are actually as flexible

Predictions

● Serverless skyrockets while serverful although not disappear, will decline

● Expect new BaaS storage services facilitated by serverful

● Will be simpler and more secure

● Billing models will evolve

Thank You

Questions?

